基于YOLOv5的路面裂缝检测系统设计与实现

1. 引言

随着城市化进程的加快和交通基础设施的老化,路面裂缝检测已成为道路维护的重要任务。传统的人工检测方法效率低下且成本高昂,而基于深度学习的自动检测技术为解决这一问题提供了新的思路。本文将详细介绍如何使用YOLOv5算法构建一个完整的路面裂缝检测系统,包括数据准备、模型训练、性能优化以及用户界面开发。

2. 系统概述

本系统采用YOLOv5作为核心检测算法,结合PyQt5开发用户界面,实现了一个端到端的路面裂缝检测解决方案。系统主要功能包括:

  • 图像和视频的路面裂缝检测
  • 检测结果可视化展示
  • 检测数据统计与分析
  • 模型性能评估

3. 数据集准备

3.1 数据集介绍

路面裂缝检测常用的公开数据集包括:

  1. CrackForest数据集:包含118张路面图像,标注了裂缝区域
  2. DeepCrack数据集:537张高质量裂缝图像,像素级标注
  3. RDD2020数据集:来自多个国家的道路损伤数据集
  4. SDNET2018数据集:包含裂纹、剥落等多种路面缺陷

本文以CrackForest数据集为例,该数据集可从以下链接获取:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值