1. 引言
随着城市化进程的加快和交通基础设施的老化,路面裂缝检测已成为道路维护的重要任务。传统的人工检测方法效率低下且成本高昂,而基于深度学习的自动检测技术为解决这一问题提供了新的思路。本文将详细介绍如何使用YOLOv5算法构建一个完整的路面裂缝检测系统,包括数据准备、模型训练、性能优化以及用户界面开发。
2. 系统概述
本系统采用YOLOv5作为核心检测算法,结合PyQt5开发用户界面,实现了一个端到端的路面裂缝检测解决方案。系统主要功能包括:
- 图像和视频的路面裂缝检测
- 检测结果可视化展示
- 检测数据统计与分析
- 模型性能评估
3. 数据集准备
3.1 数据集介绍
路面裂缝检测常用的公开数据集包括:
- CrackForest数据集:包含118张路面图像,标注了裂缝区域
- DeepCrack数据集:537张高质量裂缝图像,像素级标注
- RDD2020数据集:来自多个国家的道路损伤数据集
- SDNET2018数据集:包含裂纹、剥落等多种路面缺陷
本文以CrackForest数据集为例,该数据集可从以下链接获取:
订阅专栏 解锁全文
2万+

被折叠的 条评论
为什么被折叠?



