RAG技术学习-5
5 RAG中的生成器(Generator)
在RAG(检索增强生成)框架中,生成器扮演着至关重要的角色,它负责将检索到的信息转换成自然流畅的文本回答。与传统语言模型相比,RAG的生成器通过利用检索到的信息,能够提高回答的准确性和相关性。在RAG中,生成器的输入不仅包括传统的上下文信息,还包括通过检索器获得的相关文本段落,这使得生成器能够更好地理解问题背后的上下文,并产生更丰富信息的回应。
5.1 如何通过后检索处理增强检索结果?
大型未调整的语言模型(如GPT-4)依赖于其强大的内部知识来全面检索文档知识。然而,这些大型模型的固有问题,如上下文长度限制和对冗余信息的易受影响,仍然存在。为了缓解这些问题,一些研究在后检索处理方面做出了努力。后检索处理指的是进一步处理、过滤或优化检索器从大型文档数据库检索到的相关信息的过程。其主要目的是提高检索结果的质量,以更好地满足用户需求或后续任务。它可以被理解为对检索阶段获得的文档进行再处理。
5.1.1 信息压缩
即使检索器可以从庞大的知识库中获取相关信息,我们仍然面临处理检索文档中大量信息的挑战。一些现有研究尝试通过增加大型语言模型的上下文长度来解决这个问题,但当前的大型模型仍然面临上下文限制。因此,在某些情况下,信息压缩是必要的。信息压缩的重要性主要体现在减少噪声、应对上下文长度限制和增强生成效果方面。
5.1.2 重排
文档集重排模型的关键作用在于优化检索器检索到的文档集。LLM在增加额外上下文时性能下降,重排提供了解决这个问题的有效方法。核心思想是重新排列文档记录,将最相关的项目放在顶部,从而将文档总数减少到固定数量。这不仅解决了检索过程中可能遇到的上下文窗口扩展问题,还有助于提高检索效率和响应能力。
5.2 如何优化生成器以适应输入数据?
在RAG模型中,生成器的优化是架构的关键组成部分。生成器的任务是将检索到的信息转换成相关文本,从而提供模型的最终输出。优化生成器的目标是确保生成的文本既自然又有效地利用检索到的文档,以更好地满足用户的查询需求。
5.2.1 一般优化过程
一般优化过程指的是包含(输入,输出)对的训练数据,旨在训练模型在给定输入x的情况下生成输出y的能力。在Cheng等人的工作中,采用了一种相对经典的训练过程,即给定输入x,检索相关文档z(论文中选择Top-1),整合(x,z)后,模型生成输出y。同时,论文采用了两种常见的微调范式,即Arora等人提出的联合编码器和Xia等人提出的双编码器。
5.2.2 利用对比学习
在准备训练数据的阶段,通常生成输入和输出之间的交互对。在这种情况下,模型只能访问唯一真实的输出,可能会引起“暴露偏差”问题:在训练阶段,模型只暴露于单个真实反馈,无法访问任何其他生成的token。这可能会损害模型在应用中的性能,因为它可能过度适应训练数据中的特定反馈,而无法有效地泛化到其他场景。因此,SURGE等人提出了一种基于图文对比学习方法。
5.2.3 优化目标
在处理涉及结构化数据的检索任务时,SANTA使用了三阶段训练过程来充分理解结构和语义信息。在检索器的训练阶段,采用了对比学习,主要目标是优化查询和文档的嵌入表示。通过这种方式,生成器能够更好地理解和利用检索到的结构化数据,从而提高生成文本的质量和准确性。
相关文章
链接:
LLM与RAG的初识-1
LLM与RAG的初识-2
LLM与RAG的初识-3
LLM与RAG的初识-4
参考文献
[1] Yunfan G, Yun X, Xinyu G, Kangxiang J, Jinliu P, Yuxi B, Yi D, Jiawei S, Haofen W, et al. Retrieval-Augmented Generation for Large Language Models: A Survey[J], CoRR, 2023, abs/2312.10997
[2] Deng C, Yan W, Lemao L, Shuming S, et al. Recent Advances in Retrieval-Augmented Text Generation[C], Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 3417–3419.
[3] Ruochen Z, Hailin C, Weishi W, Fangkai J, Do X L, Chengwei Q, Bosheng D, Xiaobao G, Minzhi L, Xingxuan L, Shafiq J, et al. Retrieving Multimodal Information for Augmented Generation: A Survey.[J], CoRR, 2023, abs/2303.10868: 4736-4756.
[4] Xin C, Di L, Xiuying C, Lemao L, Dongyan Z, Rui Y, et al. Lift Yourself Up: Retrieval-augmented Text Generation with Self Memory[J], CoRR, 2023, abs/2305.02437
[5] Zhihong S, Yeyun G, Yelong S, Minlie H, Nan D, Weizhu C, et al. Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy.[J], CoRR, 2023, abs/2305.15294: 9248-9274.
[6] Menglin X, Xuchao Z, Camille C, Guoqing Z, Saravan R, Victor R, et al. Hybrid Retrieval-Augmented Generation for Real-time Composition
Assistance[J], CoRR, 2023, abs/2308.04215
[7] Zachary L, Chenglu L, Wangda Z, Anoushka G, Owen H, Millie-Ellen P, Wanli X, et al. Retrieval-augmented Generation to Improve Math Question-Answering: Trade-offs Between Groundedness and Human Preference[J], CoRR, 2023, abs/2310.03184