四旋翼无人机动力学建模方式全解析:完整刚体模型 vs 简化阻尼模型

🌐 四旋翼无人机动力学建模方式全解析:完整刚体模型 vs 简化阻尼模型

无人机建模是飞控设计、控制算法开发、仿真测试的重要基础。本文对比分析了两种典型的四旋翼无人机动力学建模方式:完整刚体模型简化阻尼模型,并讨论了它们之间的转换关系与适用场景。


🧩 一、完整刚体动力学模型(Full Rigid-Body Model)

✅ 1. 模型结构

该模型基于六自由度刚体动力学原理,建模包括位置、速度、姿态角、角速度,并显式考虑了质量、惯性矩、力矩输入等:

{p˙=vv˙=1muRe3−ge3+dpη˙=ωω˙=−J−1(ω×Jω)+J−1τ+d \begin{cases} \dot{\mathbf{p}} = \mathbf{v} \\ \dot{\mathbf{v}} = \frac{1}{m} u \mathbf{R} \mathbf{e}_3 - g \mathbf{e}_3 + \mathbf{d}_p \\ \dot{\boldsymbol{\eta}} = \boldsymbol{\omega} \\ \dot{\boldsymbol{\omega}} = -\mathbf{J}^{-1} (\boldsymbol{\omega} \times \mathbf{J}\boldsymbol{\omega}) + \mathbf{J}^{-1} \boldsymbol{\tau} + \mathbf{d} \end{cases} p˙=vv˙=m1uRe3ge3+dpη˙=ωω˙=J1(ω×Jω)+J1τ+d

  • p=[x,y,z]⊤\mathbf{p} = [x, y, z]^\topp=[x,y,z]:位置
  • v=[vx,vy,vz]⊤\mathbf{v} = [v_x, v_y, v_z]^\topv=[vx,vy,vz]:线速度
  • η=[ϕ,θ,ψ]⊤\boldsymbol{\eta} = [\phi, \theta, \psi]^\topη=[ϕ,θ,ψ]:欧拉角(滚转、俯仰、偏航)
  • ω=[ωϕ,ωθ,ωψ]⊤\boldsymbol{\omega} = [\omega_\phi, \omega_\theta, \omega_\psi]^\topω=[ωϕ,ωθ,ωψ]:角速度
  • uuu:总推力,τ=[τ1,τ2,τ3]⊤\boldsymbol{\tau} = [\tau_1, \tau_2, \tau_3]^\topτ=[τ1,τ2,τ3]:控制力矩
  • J=diag(Jxx,Jyy,Jzz)\mathbf{J} = \text{diag}(J_{xx}, J_{yy}, J_{zz})J=diag(Jxx,Jyy,Jzz):转动惯量
  • R\mathbf{R}R:旋转矩阵
  • dp,d\mathbf{d}_p, \mathbf{d}dp,d:扰动项(例如风场、建模误差)

🎯 旋转矩阵 R\mathbf{R}R 的作用

旋转矩阵 R∈SO(3)\mathbf{R} \in SO(3)RSO(3) 用于描述机体系与惯性系之间的姿态变换关系,常用于:

  • 将机体坐标系下的力(如推力)转换到惯性系;
  • 在控制中处理姿态相关控制律(如姿态误差、姿态映射);
  • 构建飞行器的非线性模型或线性化控制模型。

完整刚体模型中使用的是三轴欧拉角 (ϕ,θ,ψ)(\phi, \theta, \psi)(ϕ,θ,ψ) 对应的旋转矩阵:

R(ϕ,θ,ψ)=[cos⁡θcos⁡ψcos⁡θsin⁡ψ−sin⁡θsin⁡ϕsin⁡θcos⁡ψ−cos⁡ϕsin⁡ψsin⁡ϕsin⁡θsin⁡ψ+cos⁡ϕcos⁡ψsin⁡ϕcos⁡θcos⁡ϕsin⁡θcos⁡ψ+sin⁡ϕsin⁡ψcos⁡ϕsin⁡θsin⁡ψ−sin⁡ϕcos⁡ψcos⁡ϕcos⁡θ] \mathbf{R}(\phi, \theta, \psi) = \begin{bmatrix} \cos\theta\cos\psi & \cos\theta\sin\psi & -\sin\theta \\ \sin\phi\sin\theta\cos\psi - \cos\phi\sin\psi & \sin\phi\sin\theta\sin\psi + \cos\phi\cos\psi & \sin\phi\cos\theta \\ \cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi & \cos\phi\sin\theta\sin\psi - \sin\phi\cos\psi & \cos\phi\cos\theta \end{bmatrix} R(ϕ,θ,ψ)=cosθcosψsinϕsinθcosψcosϕsinψcosϕsinθcosψ+sinϕsinψcosθsinψsinϕsinθsinψ+cosϕcosψcosϕsinθsinψsinϕcosψsinθsinϕcosθcosϕcosθ

  • Z-Y-X 欧拉角顺序构造(偏航-俯仰-滚转);
  • 描述从机体系到世界坐标系的转换;
  • 适用于高精度六自由度建模;
  • 与角速度、惯量耦合,可推导雅可比矩阵和角加速度关系;
  • 对应 tf.transformations.euler_matrix()scipy.spatial.transform.Rotation.from_euler()

✅ 2. 特点

  • 精确描述无人机在三维空间的刚体运动;
  • 能反映姿态动力学与角动量耦合特性;
  • 适合用于强化学习策略训练高保真仿真复杂轨迹控制设计(如MPC)
  • 控制输入通常是推力+力矩,物理意义明确。

⚙️ 二、简化阻尼建模模型(Low-Level Approximate Model)

✅ 1. 模型结构

该模型省略角速度与惯量建模,仅使用一阶滞后描述姿态变化,并加入阻尼项简化空气阻力:

{p˙=vv˙=R(ϕ,θ)[00T]+[00−g]−Avϕ˙=1τϕ(Kϕϕref−ϕ)θ˙=1τθ(Kθθref−θ) \begin{cases} \dot{\mathbf{p}} = \mathbf{v} \\ \dot{\mathbf{v}} = \mathbf{R}(\phi, \theta) \begin{bmatrix} 0 \\ 0 \\ T \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix} - \mathbf{A} \mathbf{v} \\ \dot{\phi} = \frac{1}{\tau_\phi}(K_\phi \phi_{\text{ref}} - \phi) \\ \dot{\theta} = \frac{1}{\tau_\theta}(K_\theta \theta_{\text{ref}} - \theta) \end{cases} p˙=vv˙=R(ϕ,θ)00T+00gAvϕ˙=τϕ1(Kϕϕrefϕ)θ˙=τθ1(Kθθrefθ)

其中:

  • 控制输入为:TTT(总推力),ϕref,θref\phi_{\text{ref}}, \theta_{\text{ref}}ϕref,θref(参考姿态角);
  • A=diag(Ax,Ay,Az)\mathbf{A} = \text{diag}(A_x, A_y, A_z)A=diag(Ax,Ay,Az):线性阻尼系数矩阵;
  • 姿态控制器为一阶闭环系统,模拟飞控板控制逻辑;
  • R(ϕ,θ)\mathbf{R}(\phi,\theta)R(ϕ,θ):忽略偏航角的旋转矩阵近似。

简化模型常用于姿态反馈控制或仿真中,通常忽略偏航角 ψ\psiψ,只考虑俯仰 θ\thetaθ 和滚转 ϕ\phiϕ

R(ϕ,θ)=[cos⁡θ0sin⁡θsin⁡ϕsin⁡θcos⁡ϕ−sin⁡ϕcos⁡θ−cos⁡ϕsin⁡θsin⁡ϕcos⁡ϕcos⁡θ] \mathbf{R}(\phi, \theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ \sin\phi\sin\theta & \cos\phi & -\sin\phi\cos\theta \\ -\cos\phi\sin\theta & \sin\phi & \cos\phi\cos\theta \end{bmatrix} R(ϕ,θ)=cosθsinϕsinθcosϕsinθ0cosϕsinϕsinθsinϕcosθcosϕcosθ

  • 用于描述推力方向随姿态变化的投影
  • 适合在不关心偏航影响的控制场景(如位置控制、悬停);
  • 数学结构更简单,便于解析控制;

✅ 2. 特点

  • 忽略角动量耦合与力矩控制;
  • 结构简洁,适合低级控制器建模或部署;
  • 更贴近工业飞控接口(如 PX4 / ArduPilot 的期望姿态接口);
  • 常用于教学、快速验证、嵌入式部署等轻量级场景。

🔁 三、两种模型之间的转换关系

转换方向可行性方法注意事项
✅ 完整 → 简化可行省略角速度、惯量,近似为一阶姿态滞后;风阻项线性化为 −Av-A \mathbf{v}Av会损失精度与耦合性
❌ 简化 → 完整不可逆需重新建模补充角速度、惯性矩、非线性阻力项简化模型信息缺失,无法恢复

🌬️ 四、风阻力建模对比

简化模型阻尼项:

Fdamping=−A⋅v \mathbf{F}_{\text{damping}} = -\mathbf{A} \cdot \mathbf{v} Fdamping=Av

真实空气阻力模型(含风):

Fwind=−12ρACd∥v−vwind∥(v−vwind) \mathbf{F}_{\text{wind}} = -\frac{1}{2} \rho A C_d \|\mathbf{v} - \mathbf{v}_{\text{wind}}\|(\mathbf{v} - \mathbf{v}_{\text{wind}}) Fwind=21ρACdvvwind(vvwind)

对比维度简化阻尼项风阻模型
是否线性✅ 是❌ 否,二阶
是否含风❌ 否✅ 包含风速向量
易用性高,适合控制设计低,需数值计算
物理精度中(局部线性近似)高(真实气动特性)

✅ 五、建模选型建议

应用场景推荐模型
强化学习策略训练、高精度控制仿真完整模型
级联控制器设计、嵌入式飞控接口仿真简化模型
飞行数据拟合风阻建模使用风阻模型或将其线性化为阻尼系数
学术研究/论文推导推荐使用完整模型配合简化建模分析

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值