成考数学二-极限与连续-极限

极限

  1. 函数在 x → x 0 x o x_0 x→x0时的极限
    1、函数在一点的极限
    定义:设函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的某个去心邻域内有定义,若当x“无限趋于” x 0 x_0 x0时,其对应的函数值 f ( x ) f(x) f(x)“无限趋于”一个确定的数 A,则称函数 f ( x ) f(x) f(x)在 x → x 0 x o x_0 x→x0时的极限是A ,记作 lim x → x 0 f ( x ) = A { limlimits_{x o x_0}f(x)=A} x→x0limf(x)=A
    2、函数在一点的单侧极限
    函数在一点的左极限
    定义:设函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的左侧附近有定义,若当 x < x 0 x lt x_0 x<x0且“无限趋于” x 0 x_0 x0时,其对应的函数值 f ( x ) f(x) f(x)“无限趋于”一个确定的常数 A,则称函数 f ( x ) f(x) f(x)在 x → x 0 x o x_0 x→x0时的左极限是 A,记作 lim x → x 0 f ( x ) = A { limlimits_{x o x_0^-}f(x)=A} x→x0limf(x)=A.
    函数在一点的右极限
    定义:设函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的右侧附近有定义,若当 x > x 0 x gt x_0 x>x0且“无限趋于” x 0 x_0 x0时,其对应的函数值 f ( x ) f(x) f(x)“无限趋于”一个确定的常数 A,则称函数 f ( x ) f(x) f(x)在 x → x 0 x o x_0 x→x0时的右极限是 A,记作 lim x → x 0 + f ( x ) = A { limlimits_{x o x_0^+}f(x)=A} x→x0+limf(x)=A.
    3、函数在一点的极限与左、右极限的关系
    定理:设函数 f ( x ) f(x) f(x)在 x 0 x_0 x0点附近有定义,则 lim x → x 0 f ( x ) = A limlimits_{x o x_0}f(x)=A x→x0limf(x)=A的充分必要条件是: lim x → x 0 f ( x ) = A { limlimits_{x o x_0^-}f(x)=A} x→x0limf(x)=A,且 lim x → x 0 + f ( x ) = A { limlimits_{x o x_0^+}f(x)=A} x→x0+limf(x)=A(左极限等于右极限)
  2. 函数在无穷远的极限
    函数在 x → ∞ x o infty x→∞时的极限
    通俗地说, lim x → ∞ f ( x ) = A { limlimits_{x o infty}f(x)=A} x→∞limf(x)=A的含义就是当|x|无限增大时,与x对应的函数值 f ( x ) f(x) f(x)无限趋于常数 A.
    定理:设函数f(x)在无穷远处有定义, lim x → ∞ f ( x ) = A { limlimits_{x o infty}f(x)=A} x→∞limf(x)=A的充分必要条件是: lim x → + ∞ f ( x ) = A { limlimits_{x o +infty}f(x)=A} x→+∞limf(x)=A且 lim x → ∞ f ( x ) = A { limlimits_{x o -infty}f(x)=A} x→∞limf(x)=A。
  3. 函数极限的性质
    1、极限值的唯一性
    定理:若极限 lim x → x 0 f ( x ) { limlimits_{x o x_0}f(x)} x→x0limf(x)存在,则其值唯一。本定理说明,如果 lim x → x 0 f ( x ) = A { limlimits_{x o x_0}f(x)}=A x→x0limf(x)=A,且 lim x → x 0 f ( x ) = B { limlimits_{x o x_0}f(x)}=B x→x0limf(x)=B,则A=B.
    2、函数在极限存在点附近的有界性
    定理:若极限 lim x → x 0 f ( x ) { limlimits_{x o x_0}f(x)} x→x0limf(x)存在,则函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的一个去心邻域内有界.
    函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的一个去心邻域内有界指的是:存在 M > 0 , δ > 0 M gt 0, delta gt 0 M>0,δ>0,使得对任意的 x ∈ ( x 0 δ , x 0 ) ∪ ( x 0 , x 0 + δ ) x in (x_0-delta,x_0) cup(x_0,x_0+delta) x∈(x0δ,x0)∪(x0,x0+δ),都有 ∣ f ( x ) ∣ < M |f(x)| lt M ∣f(x)∣<M.
    对于无穷远来说,如果 lim x → ∞ f ( x ) { limlimits_{x o infty}f(x)} x→∞limf(x)存在,就会存在 M > 0 , X > 0 M gt 0, X gt 0 M>0,X>0,使得对任意的 x ∈ ( ∞ , X ) ∪ ( X , + ∞ ) x in (-infty,-X) cup(X,+infty) x∈(∞,X)∪(X,+∞),都有 ∣ f ( x ) ∣ < M |f(x)| lt M ∣f(x)∣<M.
    3、函数极限的保号性
    定理:若极限 lim x → x 0 f ( x ) = A , 且 A > 0 { limlimits_{x o x_0}f(x)=A},且A gt 0 x→x0limf(x)=A,且A>0,则函数 f ( x ) f(x) f(x)在 x 0 x_0 x0的一个去心邻域内大于零;若在 x 0 x_0 x0的一个去心邻域内 f ( x ) ≥ 0 f(x) geq 0 f(x)≥0,且极限 lim x → x 0 f ( x ) { limlimits_{x o x_0}f(x)} x→x0limf(x)存在,则 lim x → x 0 f ( x ) ≥ 0 { limlimits_{x o x_0}f(x)}geq 0 x→x0limf(x)≥0.
  4. 函数极限的运算
    1、极限的四则运算
    定理:若 lim x → x 0 f ( x ) = A , lim x → x 0 g ( x ) = B { limlimits_{x o x_0}f(x)=A},{ limlimits_{x o x_0}g(x)=B} x→x0limf(x)=A,x→x0limg(x)=B,则
    lim x → x 0 [ f ( x ) ± g ( x ) ] = A ± B { limlimits_{x o x_0}[f(x) pm g(x)]=A pm B} x→x0lim[f(x)±g(x)]=A±B
    lim x → x 0 [ f ( x ) g ( x ) ] = A B { limlimits_{x o x_0}[f(x)g(x)]=AB} x→x0lim[f(x)g(x)]=AB
    ( lim x → x 0 [ k f ( x ) ] = k A , k ∈ R ) ({ limlimits_{x o x_0}[kf(x)]=kA,k in R}) (x→x0lim[kf(x)]=kA,k∈R)
    lim x → x 0 f ( x ) g ( x ) = A B ( B ≠ 0 ) { limlimits_{x o x_0}dfrac{f(x)}{g(x)}=dfrac{A}{B}(B eq 0)} x→x0limg(x)f(x)=BA(B=0)
    " 0 0 dfrac{0}{0} 00"型解题技巧:趋于某一具体数时,须化简求解。
    " ∞ ∞ dfrac{infty}{infty} ∞∞"型解题技巧:趋于无穷时,当分子分母最高次幂相等&分母的最高次幂大于分子的最高次幂时,同除以最高次幂既得解。
    2、复合函数的极限
    复合函数常采用换元法求极限,结论:若 lim x → x 0 g ( x ) = u 0 , lim u → u 0 f ( u ) = A { limlimits_{x o x_0}g(x)}=u_0,{ limlimits_{u o u_0}f(u)}=A x→x0limg(x)=u0,u→u0limf(u)=A, 则 lim x → x 0 f ( g ( x ) ) u = g ( x ) lim u → u 0 f ( u ) = A { limlimits_{x o x_0}f(g(x))} stackrel{u=g(x)}Longrightarrow { limlimits_{u o u_0}f(u)}=A x→x0limf(g(x))u=g(x)u→u0limf(u)=A
  5. 两个重要极限
    lim x → 0 s i n x x = 1 lim x → 0 t a n x x = 1 { limlimits_{x o 0} dfrac{sinx}{x}} =1 Longrightarrow { limlimits_{x o 0} dfrac{tanx}{x}} =1 x→0limxsinx=1x→0limxtanx=1
    lim x → ∞ ( 1 + 1 x ) x = e lim x → 0 ( 1 + x ) 1 x = e { limlimits_{x o infty}(1+dfrac{1}{x})^x}=e Longrightarrow { limlimits_{x o 0}(1+x)^{ rac{1}{x}}}=e x→∞lim(1+x1)x=ex→0lim(1+x)x1=e
  6. 无穷小量与无穷大量
    1.无穷小量的概念
    定义:若 lim x → x 0 f ( x ) = 0 { limlimits_{x o x_0}f(x)=0} x→x0limf(x)=0,则称函数 f ( x ) f(x) f(x)在 x → x 0 x o x_0 x→x0时是一个无穷小量,记作 f ( x ) = o ( 1 ) ( x → x 0 ) f(x) = o(1)(x o x_0) f(x)=o(1)(x→x0)
    一个函数 f ( x ) f(x) f(x)是否是无穷小量,一定要指明极限过程.
    同一极限过程下的有限个无穷小量的和与积仍然还是无穷小量.
    有界函数与无穷小的积仍为无穷小.
    2.无穷大量的概念
    定义:若函数 1 f ( x ) dfrac{1}{f(x)} f(x)1 在 x → x 0 x o x_0 x→x0时是一个无穷小量,则称函数 f ( x ) f(x) f(x)在 x → x 0 x o x_0 x→x0时是一个无穷大量,记作 lim x → x 0 f ( x ) = ∞ { limlimits_{x o x_0}f(x)= infty} x→x0limf(x)=∞.
    当x无限趋于 x 0 x_0 x0时,若 1 f ( x ) > 0 dfrac{1}{f(x)} gt 0 f(x)1>0且无限趋于 0,则称函数 f ( x ) f(x) f(x)在 x → x 0 x o x_0 x→x0时是一个正无穷大量,记作 lim x → x 0 f ( x ) = + ∞ { limlimits_{x o x_0}f(x)= +infty} x→x0limf(x)=+∞ .
    当x无限趋于 x 0 x_0 x0时,若 1 f ( x ) < 0 dfrac{1}{f(x)} lt 0 f(x)1<0且无限趋于 0,则称 f ( x ) f(x) f(x)在 x → x 0 x o x_0 x→x0时是一个负无穷大量,记作 lim x → x 0 f ( x ) = ∞ { limlimits_{x o x_0}f(x)= -infty} x→x0limf(x)=∞ .
    从无穷大量的定义可以看出:无穷大量的倒数是同一极限过程下的无穷小量,非零无穷小量的倒数
    是同一极限过程下的无穷大量.
    3.无穷小量的比较
    定义:设 lim x → x 0 f ( x ) = 0 { limlimits_{x o x_0}f(x)=0} x→x0limf(x)=0, lim x → x 0 g ( x ) = 0 { limlimits_{x o x_0}g(x)=0} x→x0limg(x)=0若 lim x → x 0 f ( x ) g ( x ) = c { limlimits_{x o x_0}dfrac{f(x)}{g(x)}=c} x→x0limg(x)f(x)=c则:
    ⑴当 c = 0 c = 0 c=0时,称 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x)在 x → x 0 x o x_0 x→x0 时的高阶无穷小量,记作 f ( x ) = o ( g ( x ) ) ( x → x 0 ) f(x) = o(g(x)) (x o x_0) f(x)=o(g(x))(x→x0)
    ⑵当 c ≠ 0 c e 0 c=0且 c ≠ 1 c e 1 c=1 时,称 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x) 在 x → x 0 x o x_0 x→x0时是同阶无穷小量.
    ⑶当 c = 1 c = 1 c=1 时,称 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x)在 x → x 0 x o x_0 x→x0时是等价无穷小量,记作 f ( x ) ~ g ( x ) ( x → x 0 ) f(x) sim g(x) (x o x_0) f(x)~g(x)(x→x0)
    常用的等价无穷小:
    当 x → 0 x o 0 x→0时,有
    s i n x ~ x 1 c o s x ~ x 2 2 t a n x ~ x a r c s i n x ~ x a r c t a n x ~ x l n ( 1 + x ) ~ x e x 1 ~ x a x 1 ~ x l n a 1 + x 1 ~ x 2 sinx sim x qquad 1-cosx sim dfrac{x^2}{2} qquad tanx sim x qquad arcsinx sim x qquad arctanx sim x qquad ln(1+x) sim x qquad e^x-1 sim x qquad a^x-1 sim xlna qquad sqrt{1+x}-1 sim dfrac{x}{2} sinx~x1cosx~2x2tanx~xarcsinx~xarctanx~xln(1+x)~xex1~xax1~xlna1+x 1~2x
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 李永乐数学二真题解析1987-2008pdf是一本数学真题集,它汇集了从1987年到2008年期间的数学二真题,并对这些真题进行了详尽的解析。 这本真题解析的目的是帮助学生更好地备考数学二,通过对历年真题的解析,学生可以了解到真题中的题型分布、考点重点和解题技巧等信息。真题解析还给出了每道题的详细解答过程和解题思路,其中包括了一些常用的求解方法和技巧,使学生能够更加全面地掌握数学二的知识和技能。 通过阅读这本真题解析,学生可以逐渐熟悉数学二的考试要求,了解考试的难度和考点分布,培养应对考试的策略和技巧。学生可以结合解析中的详细解答过程,进行反复练习和思考,提高自己的解题能力和思维灵活性。 这本真题解析还可以帮助学生进行针对性的学习和复习。学生可以根据真题解析中的题型分布和考点重点,合理安排学习时间和复习重点,有针对性地进行知识巩固和弱点补充。通过多次实践和反复演练,学生可以逐渐提高自己的解题速度和准确性,增强解题的信心和能力。 总之,李永乐数学二真题解析1987-2008pdf是一本非常有价值的数学学习资料,通过阅读和利用其中的解析内容,学生可以更好地备考数学二,提高自己的解题能力和应试水平。 ### 回答2: 李永乐数学二真题解析1987-2008pdf 是一份包含了1987年至2008年期间的数学二真题解析的PDF文件。该文件为数学学习者提供了丰富的数学题目和解答,帮助他们更好地理解和掌握数学知识。这份真题解析的PDF文件可以帮助学生们对这些年份的数学二真题进行系统的学习和复习。 该份真题解析的PDF文件是由李永乐老师或相关团队制作的,李永乐老师是一位著名的数学教育专家,他在数学教育领域有着丰富的经验和教学成果。这份真题解析的PDF文件的内容可能包括了每年的数学二考试的试题和解答,以及相关的解题思路和方法。这些解析可以帮助学生们更好地理解每年考试的题目,提高他们的解题能力。 对于数学学习者来说,这份真题解析的PDF文件是宝贵的学习资源。通过仔细研究和分析这些真题解析,学生们可以更好地了解数学二考试的出题规律和重点考点,为自己的备考做好充分的准备。此外,这份真题解析的PDF文件也可以帮助学生们更好地掌握解题技巧和方法,提高他们的解题速度和准确度。 综上所述,李永乐数学二真题解析1987-2008pdf是一份重要的学习资源,对于数学学习者来说具有极大的参考价值。通过仔细研究和应用这份真题解析,学生们可以更好地备考数学二考试,提高他们的数学水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值