sklearn——主成分分析PCA操作实例

 PCA主成分分析降维实际上是寻求能使样本方差最大的一个低维空间,来最大程度区分样本。例如下面这个二维图表,就可以找一条直线(一维)使得样本点映射在上面方差最大(区分度最大)!

PCA可以用来解决的问题【Andrew Ng曾在讲PCA时提到过

1减少数据因为存储而造成的内存和硬盘的占用
2加速训练过程
3高维数据可视化

 PCA具体代码

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import numpy as np

#随便弄一个四维数组来试验一下
DF = np.array([[0,1,4,3],
              [1,2,8,9],
              [2,4,16,81],
              [2,5,20,243],
              [4,6,24,729]])
#样本数不能少于维数

#如果你不知道降到几维合适,那就是用mle帮你选取降到几维
pca_mle = PCA(n_components='mle').fit(DF) #最大似然法选取特征数量
print(pca_mle.explained_variance_ratio_)
cumsum = np.cumsum(pca_mle.explained_variance_ratio_.sum())  # 使用累计统计,来表示可解释特征的信息占比和
print(cumsum)

data_dr = pca_mle.transform(DF)
print(data_dr)#每一个维度的数据都进行了零均值化
print(data_dr.shape)

#作cumsum图评价
pca_line = PCA().fit(DF)  # 什么参数都不写,代表是 min(x.shape),一般情况下就是原特征数目了。
print(pca_line.explained_variance_ratio_)
cumsum = np.cumsum(pca_line.explained_variance_ratio_)  # 使用累计统计,来表示可解释特征的信息占比和
print(cumsum)    #从一维到四维的cumsum

plt.plot(range(1, DF.shape[1] + 1), cumsum) #设置x\y
plt.xticks(range(1, DF.shape[1] + 1))  # 横坐标轴是整数
plt.xlabel('number of components after DR')
plt.ylabel('cumulative explained variance')
plt.show()

我建议使用Anaconda的Jupyter Notebook来运行,如下:


补充实例:

from sklearn.decomposition import PCA
from sklearn.datasets import load_digits #8x8的手写数字数据
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
 
import time
 
X, y = load_digits(return_X_y=True)
print('X shape:', X.shape)  # 此处会看到X是64维的数据
X_train, x_test, y_train, y_test = train_test_split(X, y)
 
 
tic = time.time()
knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_train)
print (knn_clf.score(x_test, y_test))
toc = time.time()
print ('Time of method[exec_without_pca] costs:'+str(toc-tic)) 
 
print ('----' * 10)
tic = time.time()
knn_clf = KNeighborsClassifier()
pca = PCA(n_components=0.95) # 重构阈值为95%
pca.fit(X_train, y_train)
X_train_dunction = pca.transform(X_train)
X_test_dunction = pca.transform(x_test)
knn_clf.fit(X_train_dunction, y_train)
print (knn_clf.score(X_test_dunction, y_test))
toc = time.time()
print ('Time of method[exec_with_pca] costs:'+str(toc-tic)) 

import matplotlib.pyplot as plt
%matplotlib inline
def draw_graph():
    pca = PCA(n_components=2)
    pca.fit(X)
    X_reduction = pca.transform(X)
    for i in range(10):
        plt.scatter(X_reduction[y==i,0], X_reduction[y==i,1], alpha=0.8, label='%s' % i)
    plt.legend()
    plt.show()

PCA(Principal Component Analysis)是一种常见的数据降维方法,可以将高维数据降至低维,同时保留尽可能多的数据信息。在 sklearn 中,可以使用 PCA 类实现 PCA 操作PCA 类的主要参数包括: - n_components:指定降维后的维度数,也就是保留多少个主成分。可以设置为整数、浮点数(0~1之间,表示保留的方差占比)或者字符串(如 'mle',表示使用 MLE 方法选择主成分数)。 - svd_solver:指定奇异值分解的方法,有以下几种选择: - 'auto':自动选择,默认。 - 'full':使用 scipy.linalg.svd 方法进行奇异值分解。 - 'arpack':使用 arpack 方法进行奇异值分解,适用于稀疏数据。 - 'randomized':使用 randomized 方法进行奇异值分解,适用于大规模数据。 - whiten:是否进行白化操作,将降维后的数据进行归一化处理。 下面是一个使用 PCA 进行数据降维的示例: ```python from sklearn.decomposition import PCA from sklearn.datasets import load_iris # 加载 iris 数据集 iris = load_iris() # 创建 PCA 实例,指定降维后的维度数为 2 pca = PCA(n_components=2) # 对 iris 数据集进行降维 X = pca.fit_transform(iris.data) # 查看降维后的数据 print(X.shape) # 输出 (150, 2) ``` 这里使用 PCA 将 iris 数据集降至 2 维,并将降维后的数据存储在 X 中。可以看到,降维后的数据形状为 (150, 2),即样本数为 150,特征数为 2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

LRJ-jonas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值