YOLOV8中coco8-seg数据集文件树
../datasets/coco8-seg
│ coco8-seg.yml
├───images
│ ├───test
│ │ ├───000000000001.jpg
│ │ └───000000000002.jpg
│ │ ...
│ ├───train
│ │ ├───000000000001.jpg
│ │ └───000000000002.jpg
│ │ ...
│ └───val
│ ├───000000000001.jpg
│ └───000000000002.jpg
│ ...
└───labels
│
├───test
│ ├───000000000001.txt
│ └───000000000002.txt
│ ...
│
├───train
│ ├───000000000001.txt
│ └───000000000002.txt
│ ...
│
└───val
├───000000000001.txt
└───000000000002.txt
...
标准的ultralytics/cfg/datasets/coco8-seg.yaml
# COCO8-seg dataset (first 8 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco8-seg/
# Example usage: yolo train data=coco8-seg.yaml
# parent
# ├── ultralytics
# └── datasets
# └── coco8-seg ← downloads here (1 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco8-seg # dataset root dir
train: images/train # train images (relative to 'path') 4 images
val: images/val # val images (relative to 'path') 4 images
test: # test images (optional)
# Classes
names:
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush
# Download script/URL (optional)
download: https://ultralytics.com/assets/coco8-seg.zip
共80个类别。其中.txt标签格式为:
<class-index> <x1> <y1> <x2> <y2> ... <xn> <yn>
如:
0 0.681 0.485 0.670 0.487 0.676 0.487
1 0.504 0.000 0.501 0.004 0.498 0.004 0.493 0.010 0.492 0.0104
标签文件(.txt)说明:
1)一张rgb图像对应一个.txt标签;
2)标签文件中由多行数据(类别号,<class-index> 和归一化的像素点<x1> <y1>),每行标记图像中一个类别的物体;
3)像素点数量不少于3个。
自定义yolov8分割数据集按照coco8-seg格式制作。类别数量自定义,需要增删coco8-seg.yaml中name字典。
这里的Class数量与模型输出对应,coco8-seg数据集对应的模型输出shape为:(bz, 4 + 80 + 32), 8400)、(bz, 32, 160, 160)。80对应类别数,如果数据集删除到2个类别,则输出的shape为(bz, 4 + 80 + 32), 8400)、(bz, 32, 160, 160)。其中,
4:为 box,(x, y, w, h);
80:为 class的confidence;
# yolo 标签制作by mask
import cv2
import numpy as np
import os
mask_path = r'green\mask'
mask_lists = os.listdir(mask_path)
for mask_name in tqdm(mask_lists):
filename, _ = os.path.splitext(mask_name)
label = str(0) # 类别标签,YOLO格式中通常是1表示存在物体
mask = cv2.imread(os.path.join(mask_path, mask_name), -1)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours: # 确保至少有一个轮廓
for coord in contours[0]:
# 计算归一化坐标并格式化为8位长度的字符串
x_normalized = coord[0][0] / 640
y_normalized = coord[0][1] / 480
x = str(x_normalized)[:8] # 使用zfill方法填充0直到长度为8
y = str(y_normalized)[:8]
# 构建标签字符串
xy = f' {x} {y}'
label += xy
# 打开文件,准备写入标签
with open(os.path.join('labels', filename + '.txt'), 'w') as f:
# 写入标签
f.write(label)