理解『注意力机制』的本质

一、引例

假设有这样一组数据,它们是腰围和体重一一对应的数据对。我们将根据表中的数据对去估计体重。

表1. 腰围体重表

如果现在给出一个新的腰围 62 ,那么体重的估计值是多少呢?

凭经验,我们认为腰围和体重是正相关的,所以我们会自然地『关注』和 62 差距更小的那些腰围,来去估计体重。也就是更加关注表格中腰围是 60 和 64 的『腰围-体重对』(waistline-weight pairs)。即,我们会估计此人的体重在 110 ~ 115 之间。这是一种定性的分析。

下面我们来算一下具体值。我们选取一种简单直观的方法来计算:
由于 62 距离 60 和 64 的距离是相等的,所以我们取 110 和 115 的平均值作为 62 腰围对应的体重。
110 + 115 2 = 112.5 \frac{110 + 115}{2}=112.5 2110+115=112.5
也可以这样认为,由于 62 距离 60 和 64 是最近的,所以我们更加『注意』它们,又由于 62 到它俩的距离相等,所以我们给这两对『腰围-体重对』各分配 0.5 的权重。
0.5 × 110 + 0.5 × 115 = 112.5 0.5\times 110+0.5\times 115=112.5 0.5×110+0.5×115=112.5
但是,我们到现在还没有用到过 68 --> 126 这个『腰围-体重对』,我们应该再分一些权重给它,让我们的估计结果更准确。

我们上面的讨论可以总结为公式: 体重估计值 = 权重 1 × 体重 1 + 权重 2 × 体重 2 + 权重 3 × 体重 3 体重估计值=权重1×体重1+权重2×体重2+权重3×体重3 体重估计值=权重1×体重1+权重2×体重2+权重3×体重3

这个权重应该如何计算呢?


二、注意力机制

我们把『腰围-体重对』改写成 Python 语法中(字典)的『键-值对』(key-value pairs),把给出的新腰围 62 叫请求(query),简称 q q q .

现在我们给那些值起了新的名字,所以公式可以写为: f ( q ) = α ( q , k 1 ) ⋅ v 1 + α ( q , k 2 ) ⋅ v 2 + α ( q , k 3 ) ⋅ v 3 = Σ i = 1 3 α ( q , k i ) ⋅ v i f(q)=\alpha (q, k_1)\cdot v_1 + \alpha (q, k_2)\cdot v_2 + \alpha (q, k_3)\cdot v_3=\Sigma _{i=1}^{3}\alpha (q, k_i)\cdot v_i f(q)=α(q,k1)v1+α(q,k2)v2+α(q,k3)v3=Σi=13α(q,ki)vi
这个公式描述了『注意力机制』。其中, f ( q ) f(q) f(q) 表示注意力机制的输出, α ( q , k i ) \alpha (q, k_i) α(q,ki) 表示『注意力权重』。它和 q q q k i k_i ki 的相似度有关,相似度越高,注意力权重越高。
它是如何计算的呢?方法有很多,在本例中,我们使用高斯核计算:
G S ( q , k i ) = e − 1 2 ( q − k i ) 2 GS(q, k_i)=e^{-\frac{1}{2}(q-k_i)^2} GS(q,ki)=e21(qki)2
我们取 ( − 1 2 ( q − k i ) 2 ) (-\frac{1}{2}(q-k_i)^2) (21(qki)2)部分进行下一步计算,并把它叫做『注意力分数』。显然,现在这个注意力分数是个绝对值很大的数,没法作为权重使用。所以下面我们要对其进行归一化,把注意力分数转换为 [0, 1] 间的注意力权重(用 α ( q , k i ) \alpha (q, k_i) α(q,ki) 表示)。本例选用 Softmax 进行归一化:
α ( q , k i ) = Softmax ( − 1 2 ( q − k i ) 2 ) = e − 1 2 ( q − k i ) 2 Σ i = 1 3 e − 1 2 ( q − k i ) 2 \alpha (q, k_i) = \text{Softmax}(-\frac{1}{2}(q-k_i)^2) = \frac{e^{-\frac{1}{2}(q-k_i)^2}}{\Sigma _{i=1}^{3}e^{-\frac{1}{2}(q-k_i)^2}} α(q,ki)=Softmax(21(qki)2)=Σi=13e21(qki)2e21(qki)2
我们发现,好巧不巧地, α ( q , k i ) \alpha (q, k_i) α(q,ki) 最终又变成高斯核的表达式。

本例中的高斯核计算的相似度为: G S ( 62 , 68 ) = 1.52 × 1 0 − 8 GS(62, 68)= 1.52×10^{-8} GS(62,68)=1.52×108 G S ( 62 , 60 ) = 0.135 GS(62, 60)= 0.135 GS(62,60)=0.135 G S ( 62 , 64 ) = 0.135 GS(62, 64)= 0.135 GS(62,64)=0.135
G S ( q , k 1 ) GS(q, k_1) GS(q,k1) 太小了,我们直接近似为 0 .
注意力权重计算结果为: α ( 62 , 68 ) = 0 \alpha (62, 68) = 0 α(62,68)=0 α ( 62 , 60 ) = 0.5 \alpha (62, 60) = 0.5 α(62,60)=0.5 α ( 62 , 64 ) = 0.5 \alpha (62, 64) = 0.5 α(62,64)=0.5
体重估计值为: f ( q ) = α ( 62 , 68 ) × 126 + α ( 62 , 60 ) × 110 + α ( 62 , 64 ) × 115 = 112.5 f(q) = \alpha (62, 68) \times 126 + \alpha (62, 60) \times 110 + \alpha (62, 64) \times 115 = 112.5 f(q)=α(62,68)×126+α(62,60)×110+α(62,64)×115=112.5


三、多维情况

q q q, k k k, v v v 为多维时


注意力分数 α ( q i , k i ) \alpha (q_i, k_i) α(qi,ki) 可以用以下方法计算:

模型公式
加性模型 α ( q i , k i ) = softmax ( W q q i + W k k i + b ) \alpha(q_i, k_i) = \text{softmax}(W_q q_i + W_k k_i + b) α(qi,ki)=softmax(Wqqi+Wkki+b)
点积模型 α ( q i , k i ) = q i ⋅ k i d \alpha(q_i, k_i) = \frac{q_i \cdot k_i}{\sqrt{d}} α(qi,ki)=d qiki
缩放点积模型 α ( q i , k i ) = q i ⋅ k i d k \alpha(q_i, k_i) = \frac{q_i \cdot k_i}{\sqrt{d_k}} α(qi,ki)=dk qiki

我们以『点积模型』为例


q 1 = [ 64 , 85 ] q_1=[64, 85] q1=[64,85]
k 1 T = [ 68 91 ] k_1^T= \begin{bmatrix} 68 \\ 91 \end{bmatrix} k1T=[6891]
则有
α ( q 1 , k 1 ) = Softmax ( q 1 k 1 T ) = 64 × 68 + 85 × 91 = 4352 + 7735 = 12087 \alpha(q_1, k_1) = \text{Softmax}(q_1 k_1^T) = 64 \times 68 + 85 \times 91 = 4352 + 7735 = 12087 α(q1,k1)=Softmax(q1k1T)=64×68+85×91=4352+7735=12087
其他注意力分数同理。
那么现在,多维的 f ( q ) f(q) f(q) 公式可以表示为:
f ( q ) = Σ i = 1 3 α ( q i , k i T ) ⋅ v i = Softmax ( q i k i T ) ⋅ v i f(q)=\Sigma _{i=1}^{3}\alpha (q_i, k_i^T)\cdot v_i=\text{Softmax}(q_i k_i^T)\cdot v_i f(q)=Σi=13α(qi,kiT)vi=Softmax(qikiT)vi

为了方便计算,我们写成矩阵形式。
Q = [ 64 85 61 80 ] Q = \begin{bmatrix} 64 & 85 \\ 61 & 80 \\ \end{bmatrix} Q=[64618580] K T = [ 68 60 64 91 87 88 ] K^T = \begin{bmatrix} 68 & 60 & 64 \\ 91 & 87 & 88 \\ \end{bmatrix} KT=[689160876488] V = [ 126 180 110 172 115 170 ] V = \begin{bmatrix} 126 & 180 \\ 110 & 172 \\ 115 & 170 \\ \end{bmatrix} V= 126110115180172170 f ( Q ) = Softmax ( Q K T ) V f(Q)=\text{Softmax}(QK^T)V f(Q)=Softmax(QKT)V

为了缓解梯度消失的问题,我们还会除以一个特征维度 d k \sqrt{d_k} dk ,即:
f ( Q ) = Softmax ( Q K T / d k ) V f(Q)=\text{Softmax}(QK^T/\sqrt{d_k})V f(Q)=Softmax(QKT/dk )V
这一系列操作,被称为『缩放点积注意力模型』(scaled dot-product attention)

如果 Q Q Q, K K K, V V V 是同一个矩阵,会发生什么?


四、自注意力机制

我们用 X X X 表示这三个相同的矩阵:
X = Q = K = V = [ 67 91 60 87 64 84 ] X=Q=K=V=\begin{bmatrix} 67 & 91 \\ 60 & 87 \\ 64 & 84 \\ \end{bmatrix} X=Q=K=V= 676064918784
则上述的注意力机制表达式可以写成:
f ( X ) = Softmax ( X X T / d k ) X f(X)=\text{Softmax}(XX^T/\sqrt{d_k})X f(X)=Softmax(XXT/dk )X
这个公式描述了『自注意力机制』(Self-Attention Mechanism)。在实际应用中,可能会对 X X X 做不同的线性变换再输入,比如 Transformer 模型。这可能是因为 X X X 转换空间后,能更加专注注意力的学习。
三个可学习的权重矩阵 W Q W_Q WQ, W K W_K WK, W V W_V WV 可以将输入 X X X 投影到查询、键和值的空间。
f ( X ) = Softmax ( X W Q ( X W K ) T / d k ) X W V f(X)=\text{Softmax}(XW_Q(XW_K)^T/\sqrt{d_k})XW_V f(X)=Softmax(XWQ(XWK)T/dk )XWV

该公式执行以下步骤:

  1. 使用权重矩阵 W Q W_Q WQ W K W_K WK 将输入序列 X X X 投影到查询空间和键空间,得到 X W Q XW_Q XWQ X W K XW_K XWK
  2. 计算自注意力分数: ( X W Q ) ( X W K ) T (XW_Q)(XW_K)^T (XWQ)(XWK)T,并除以 d k \sqrt{d_k} dk 进行缩放。
  3. 对自注意力分数进行 Softmax 操作,得到注意力权重。
  4. 使用权重矩阵 W V W_V WV 将输入序列 X X X 投影到值空间,得到 X W V XW_V XWV
  5. 将 Softmax 的结果乘以 X W V XW_V XWV,得到最终的输出。

这个带有权重矩阵的自注意力机制允许模型学习不同位置的查询、键和值的映射关系,从而更灵活地捕捉序列中的信息。在Transformer等模型中,这样的自注意力机制广泛用于提高序列建模的效果。


相关概念推荐阅读:高斯核是什么?Softmax 函数是什么?
推荐B站视频:注意力机制的本质(BV1dt4y1J7ov),65 注意力分数【动手学深度学习v2】(BV1Tb4y167rb)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值