大模型训练与微调(1)——优化器选择总结
当前最新的大模型在优化器的选择上,主要结合了传统优化器的稳定性与新型优化器的效率优势。以下是主流大模型采用的优化器及其技术特点的总结:
一、AdamW优化器:成熟稳定的主流选择
-
核心原理与改进
AdamW是Adam的改进版本,通过解耦权重衰减(Weight Decay)与梯度更新,解决了传统Adam中L2正则化与自适应学习率机制的冲突。其更新公式中,权重衰减独立作用于参数更新,确保正则化效果更精准。 -
应用场景与优势
- 大规模模型训练:如GPT系列(如GPT-2、GPT-3)广泛采用AdamW,因其能稳定处理高参数量的训练,避免梯度爆炸或过拟合。
- 分段学习率预热:初始阶段采用低学习率逐步提升,结合动态调整策略(如线性衰减),提升收敛效率。
-
局限性
- 需存储一阶和二阶动量,内存占用较高,对硬件资源要求较大。
二、Lion优化器:谷歌提出的高效替代方案
-
创新设计
Lion(EvoLved Sign Momentum)通过符号动量更新简化计算流程,仅需跟踪一阶动量,并利用符号函数(sign
)统一更新幅度。其公式为:
[
\boldsymbol{u}t = \text{sign}(\beta_1 \boldsymbol{m}{t-1} + (1-\beta_1)\boldsymbol{g}_t)
]
这种设计显著降低了计算复杂度与内存需求。 -
优势表现
- 内存效率提升:内存占用仅为AdamW的一半,适合训练参数量超过千亿的超大模型(如ViT、GPT-2)。
- 训练速度与泛化能力:实验显示,Lion在语言建模任务中训练步数减少37.5%,扩散模型训练效率提升2.3倍,同时通过符号操作隐含噪声注入,增强泛化性。
-
适用场景
- 大批量训练(Batch Size ≥ 4096)与资源受限环境(如TPU集群规模缩减)。
三、其他优化器的补充应用
-
SGD与动量优化(Momentum)
- 尽管自适应优化器占主导,部分研究仍在小规模模型或特定任务中采用SGD结合动量的方法,以规避自适应学习率的潜在偏差。
-
AdaGrad与RMSProp
- 主要用于早期模型或特定场景(如稀疏数据),但因学习率衰减过快或依赖全局学习率等问题,逐渐被Adam系列取代。
-
混合优化策略
- 部分模型在训练不同阶段切换优化器,例如初期使用AdamW保证稳定性,后期切换至Lion加速收敛。
四、优化器选择趋势与实验对比
优化器 | 内存占用 | 计算复杂度 | 适用场景 | 代表性模型 |
---|---|---|---|---|
AdamW | 高 | 高 | 中小批量、稳定收敛 | GPT系列、BERT |
Lion | 低 | 低 | 大批量、资源受限 | 谷歌ViT、GPT-2变体 |
SGD+M | 中 | 低 | 特定任务调优 | 早期ResNet、部分RL模型 |
五、未来发展方向
- 低内存优化器:如Lion的进一步改进,结合稀疏计算与硬件适配,降低大模型训练门槛。
- 自适应与符号更新的融合:探索结合AdamW的自适应特性与Lion的符号动量机制,平衡效率与稳定性。
- 可证明安全的优化策略:针对大模型安全风险(如欺骗性对齐),优化器需兼顾性能与可控性,如引入约束性正则化项。
综上,当前大模型优化器的选择以AdamW和Lion为主流,分别对应稳定性与效率的需求。未来随着模型规模的持续扩大,低内存、高扩展性的优化器(如Lion)可能进一步普及,同时安全性与计算效率的平衡将成为关键研究方向。