yolov5+strongsort的目标跟踪实现

Yolov5网络结构图

9b1f8669c7e707217d8923927fa6ca78.png

本文也会以Yolov5s的网络结构为主线,讲解与其他三个模型(Yolov5m、Yolov5l、Yolov5x)的不同点,让大家对于Yolov5有一个深入浅出的了解。

1.2 网络结构可视化

将四种模型pt文件的转换成对应的onnx文件后,即可使用netron工具查看。
但是,有些同学可能不方便,使用脚本转换查看。
因此,大白也上传了每个网络结构图的图片,也可以直接点击查看。
虽然没有netron工具更直观,但是也可以学习了解。

1.2.1 Yolov5s网络结构

Yolov5s网络是Yolov5系列中深度最小,特征图的宽度最小的网络。后面的3种都是在此基础上不断加深,不断加宽。

上图绘制出的网络结构图也是Yolov5s的结构,大家也可直接点击查看,Yolov5s的网络结构可视化的图片。

1.2.2 Yolov5m网络结构

此处也放上netron打开的Yolov5m网络结构可视图,点击即可查看,后面第二版块会详细说明不同模型的不同点。

1.2.3 Yolov5l网络结构

此处也放上netronx打开的Yolov5l网络结构可视图,点击即可查看

1.2.4 Yolov5x网络结构

此处也放上netronx打开的Yolov5x网络结构可视图,点击即可查看

核心基础内容

2.1 Yolov3&Yolov4网络结构图

2.1.1 Yolov3网络结构图

Yolov3的网络结构是比较经典的one-stage结构,分为输入端、Backbone、Neck和Prediction四个部分。

大白在之前的《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》中讲了很多,这里不多说,还是放上绘制的Yolov3的网络结构图

91a35a953980a5fd982ce6c37e8e4ba1.png

2.1.2 Yolov4网络结构图

Yolov4在Yolov3的基础上进行了很多的创新。
比如:

输入端采用mosaic数据增强,
Backbone上采用了CSPDarknet53、Mish激活函数、Dropblock等方式,
Neck中采用了SPP、FPN+PAN的结构,
输出端则采用CIOU_Loss、DIOU_nms操作。

因此Yolov4对Yolov3的各个部分都进行了很多的整合创新,关于Yolov4详细的讲解还是可以参照大白之前写的《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》,写的比较详细。

d1644a64f281e4f9ba8a9104413d7889.png

2.2 Yolov5核心基础内容

Yolov5的结构和Yolov4很相似,但也有一些不同,大白还是按照从整体到细节的方式,对每个板块进行讲解。

c1a430f78fa4f05c8763fe0bcaeb08e7.png

上图即Yolov5的网络结构图,可以看出,还是分为输入端、Backbone、Neck、Prediction四个部分。

大家可能对Yolov3比较熟悉,因此大白列举它和Yolov3的一些主要的不同点,并和Yolov4进行比较。

(1)输入端:Mosaic数据增强、自适应锚框计算、自适应图片缩放
(2)Backbone:Focus结构,CSP结构
(3)Neck:FPN+PAN结构
(4)Prediction:GIOU_Loss

下面丢上Yolov5作者的算法性能测试图:

8763bba2d5834c30ba2325d673d98b54.png

Yolov5作者也是在COCO数据集上进行的测试,大白在之前的文章讲过,COCO数据集的小目标占比,因此最终的四种网络结构,性能上来说各有千秋。

Yolov5s网络最小,速度最少,AP精度也最低。但如果检测的以大目标为主,追求速度,倒也是个不错的选择。

其他的三种网络,在此基础上,不断加深加宽网络,AP精度也不断提升,但速度的消耗也在不断增加。

2.2.1 输入端

(1)Mosaic数据增强

Yolov5的输入端采用了和Yolov4一样的Mosaic数据增强的方式。

Mosaic数据增强提出的作者也是来自Yolov5团队的成员,不过,随机缩放随机裁剪随机排布的方式进行拼接,对于小目标的检测效果还是很不错的。

f1f3afcaac6bc6b74494306545bd4318.png

Mosaic数据增强的内容在之前《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》文章中写的很详细,详情可以查看之前的内容。

(2) 自适应锚框计算

在Yolo算法中,针对不同的数据集,都会有初始设定长宽的锚框

在网络训练中,网络在初始锚框的基础上输出预测框,进而和真实框groundtruth进行比对,计算两者差距,再反向更新,迭代网络参数

因此初始锚框也是比较重要的一部分,比如Yolov5在Coco数据集上初始设定的锚框:

cf6f8f69b0e2b8b527a85661a6095584.png

在Yolov3、Yolov4中,训练不同的数据集时,计算初始锚框的值是通过单独的程序运行的。

但Yolov5中将此功能嵌入到代码中,每次训练时,自适应的计算不同训练集中的最佳锚框值。

当然,如果觉得计算的锚框效果不是很好,也可以在代码中将自动计算锚框功能关闭。  

c9dd950ea3f1adc152c5414b81ad0e8e.png

控制的代码即train.py中上面一行代码,设置成False,每次训练时,不会自动计算。

 

(3)自适应图片缩放

在常用的目标检测算法中,不同的图片长宽都不相同,因此常用的方式是将原始图片统一缩放到一个标准尺寸,再送入检测网络中。

比如Yolo算法中常用416*416,608*608等尺寸,比如对下面800*600的图像进行缩放。

a913afabb9d78c887db10a7087af5a98.png

Yolov5代码中对此进行了改进,也是Yolov5推理速度能够很快的一个不错的trick。

作者认为,在项目实际使用时,很多图片的长宽比不同,因此缩放填充后,两端的黑边大小都不同,而如果填充的比较多,则存在信息冗余,影响推理速度。

因此在Yolov5的代码中datasets.py的letterbox函数中进行了修改,对原始图像自适应的添加最少的黑边

bd1502130cdfe10adf8db25928841266.png

图像高度上两端的黑边变少了,在推理时,计算量也会减少,即目标检测速度会得到提升。

这种方式在之前github上Yolov3中也进行了讨论:https://github.com/ultralytics/yolov3/issues/232

在讨论中,通过这种简单的改进,推理速度得到了37%的提升,可以说效果很明显。

但是有的同学可能会有大大的问号??如何进行计算的呢?大白按照Yolov5中的思路详细的讲解一下,在datasets.py的letterbox函数中也有详细的代码。

 

计算最少的填充类

第一步:计算缩放比例

a712cb581906c961d762d32ded6bc147.png

原始缩放尺寸是416*416,都除以原始图像的尺寸后,可以得到0.52,和0.69两个缩放系数,选择小的缩放系数。

第二步:计算缩放后的尺寸

6a4dafb6bf094129db1b4bdc98836c14.png

原始图片的长宽都乘以最小的缩放系数0.52,宽变成了416,而高变成了312。

第三步:计算黑边填充数值

94de9b7f7e03be7961865ef0e5e547b3.png

将416-312=104,得到原本需要填充的高度。再采用numpy中np.mod取余数的方式,得到8个像素,再除以2,即得到图片高度两端需要填充的数值。

此外,需要注意的是:

a.这里大白填充的是黑色,即(0,0,0),而Yolov5中填充的是灰色,即(114,114,114),都是一样的效果。

b.训练时没有采用缩减黑边的方式,还是采用传统填充的方式,即缩放到416*416大小。只是在测试,使用模型推理时,才采用缩减黑边的方式,提高目标检测,推理的速度。

c.为什么np.mod函数的后面用32?因为Yolov5的网络经过5次下采样,而2的5次方,等于32。所以至少要去掉32的倍数,再进行取余。

 

2.2.2 Backbone

(1)Focus结构

029dd041903d77484f3398b95660ad96.png

Focus结构,在Yolov3&Yolov4中并没有这个结构,其中比较关键是切片操作。

比如右图的切片示意图,4*4*3的图像切片后变成2*2*12的特征图。

以Yolov5s的结构为例,原始608*608*3的图像输入Focus结构,采用切片操作,3通道结果focus后变成12通道。先变成304*304*12的特征图,再经过一次32个卷积核的卷积操作,最终变成304*304*32的特征图。

 需要注意的是:Yolov5s的Focus结构最后使用了32个卷积核,而其他三种结构,使用的数量有所增加,先注意下,后面会讲解到四种结构的不同点。

(2)CSP结构

Yolov4网络结构中,借鉴了CSPNet的设计思路,在主干网络中设计了CSP结构。

d4e993a1690309de9ab1714d4ee37eda.png

Yolov5与Yolov4不同点在于,Yolov4中只有主干网络使用了CSP结构。

而Yolov5中设计了两种CSP结构,以Yolov5s网络为例,CSP1_X结构应用于Backbone主干网络,另一种CSP2_X结构则应用于Neck中。

dda3fa0da6fc7110b0e66fa67781d752.png

这里关于CSPNet的内容,也可以查看大白之前的《深入浅出Yolo系列之Yolov3&Yolov4核心基础完整讲解》

2.2.3 Neck

Yolov5现在的Neck和Yolov4中一样,都采用FPN+PAN的结构,但在Yolov5刚出来时,只使用了FPN结构,后面才增加了PAN结构,此外网络中其他部分也进行了调整。

因此,大白在Yolov5刚提出时,画的很多结构图,又都重新进行了调整。

dceead9330f8a8acbdcefe58cbfcc817.png

这里关于FPN+PAN的结构,大白在《深入浅出Yolo系列之Yolov3&Yolov4核心基础知识完整讲解》中,讲的很多,大家应该都有理解。

但如上面CSPNet结构中讲到,Yolov5和Yolov4的不同点在于,

Yolov4的Neck结构中,采用的都是普通的卷积操作。而Yolov5的Neck结构中,采用借鉴CSPnet设计的CSP2结构,加强网络特征融合的能力。

3c52704c55dab879f2019d1d0f335a25.png

2.2.4 输出端

(1)Bounding box损失函数

Yolov5中采用其中的CIOU_Loss做Bounding box的损失函数。

Yolov4中也采用CIOU_Loss作为目标Bounding box的损失。

fc37353b582712239e4ce4a503fe928a.png

(2)nms非极大值抑制

在目标检测的后处理过程中,针对很多目标框的筛选,通常需要nms操作。

因为CIOU_Loss中包含影响因子v,涉及groudtruth的信息,而测试推理时,是没有groundtruth的。

所以Yolov4在DIOU_Loss的基础上采用DIOU_nms的方式,而Yolov5中采用加权nms的方式。

可以看出,采用DIOU_nms,下方中间箭头的黄色部分,原本被遮挡的摩托车也可以检出。

4831b3d074ad41f88baaba9f54c981dd.png

大白在项目中,也采用了DIOU_nms的方式,在同样的参数情况下,将nms中IOU修改成DIOU_nms。对于一些遮挡重叠的目标,确实会有一些改进。

比如下面黄色箭头部分,原本两个人重叠的部分,在参数和普通的IOU_nms一致的情况下,修改成DIOU_nms,可以将两个目标检出。

虽然大多数状态下效果差不多,但在不增加计算成本的情况下,有稍微的改进也是好的。

e5ad941effe3c008831ea338f5cf552a.png

比如下面黄色箭头部分,原本两个人重叠的部分,在参数和普通的IOU_nms一致的情况下,修改成DIOU_nms,可以将两个目标检出。

虽然大多数状态下效果差不多,但在不增加计算成本的情况下,有稍微的改进也是好的。

492955a2a1121bb54d71d9d31ddcc2ba.png

2.3.1 四种结构的参数

大白先取出Yolov5代码中,每个网络结构的两个参数:

(1)Yolov5s.yaml

f97e77ca53f1b362cff2573b42f466d0.png

(2)Yolov5m.yaml

488f66040e55ca5219d5f292a9bed873.png

(3)Yolov5l.yaml

c1c7c08618dfffbe781a73d150652506.png

(4)Yolov5x.yaml

6917bf045756c058155225ea81fc4ae2.png

四种结构就是通过上面的两个参数,来进行控制网络的深度宽度。其中depth_multiple控制网络的深度width_multiple控制网络的宽度

2.3.2 Yolov5网络结构

四种结构的yaml文件中,下方的网络架构代码都是一样的。

为了便于讲解,大白将其中的Backbone部分提取出来,讲解如何控制网络的宽度和深度,yaml文件中的Head部分也是同样的原理。

a79fa36eeb38af1a9659e1c8ebfb7e09.png

在对网络结构进行解析时,yolo.py中下方的这一行代码将四种结构的depth_multiplewidth_multiple提取出,赋值给gd,gw。后面主要对这gd,gw这两个参数进行讲解。

7df06a19b896a33e076c610599d19fb1.png

下面再细致的剖析下,看是如何控制每种结构,深度和宽度的。

2.3.3 Yolov5四种网络的深度

2e8f3a29d0a83a6442b165ae73b6d465.png

(1)不同网络的深度

在上图中,大白画了两种CSP结构,CSP1和CSP2,其中CSP1结构主要应用于Backbone中,CSP2结构主要应用于Neck中。

需要注意的是,四种网络结构中每个CSP结构的深度都是不同的。

a.以yolov5s为例,第一个CSP1中,使用了1个残差组件,因此是CSP1_1。而在Yolov5m中,则增加了网络的深度,在第一个CSP1中,使用了2个残差组件,因此是CSP1_2

而Yolov5l中,同样的位置,则使用了3个残差组件,Yolov5x中,使用了4个残差组件

其余的第二个CSP1和第三个CSP1也是同样的原理。

b.在第二种CSP2结构中也是同样的方式,以第一个CSP2结构为例,Yolov5s组件中使用了2×X=2×1=2个卷积,因为X=1,所以使用了1组卷积,因此是CSP2_1

而Yolov5m中使用了2,Yolov5l中使用了3,Yolov5x中使用了4组。

其他的四个CSP2结构,也是同理。

Yolov5中,网络的不断加深,也在不断增加网络特征提取特征融合的能力。

(2)控制深度的代码

控制四种网络结构的核心代码是yolo.py中下面的代码,存在两个变量,n和gd

我们再将n和gd带入计算,看每种网络的变化结果。

b9826c2008aed764f60078351c9c5d02.png

(3)验证控制深度的有效性

我们选择最小的yolov5s.yaml和中间的yolov5l.yaml两个网络结构,将gd(depth_multiple)系数带入,看是否正确。

2de3d1b37d2450ba33b2a09a226bb64e.png

a. yolov5s.yaml

其中depth_multiple=0.33,即gd=0.33,而n则由上面红色框中的信息获得。

以上面网络框图中的第一个CSP1为例,即上面的第一个红色框。n等于第二个数值3。

gd=0.33,带入(2)中的计算代码,结果n=1。因此第一个CSP1结构内只有1个残差组件,即CSP1_1。

第二个CSP1结构中,n等于第二个数值9,而gd=0.33,带入(2)中计算,结果n=3,因此第二个CSP1结构中有3个残差组件,即CSP1_3。

第三个CSP1结构也是同理,这里不多说。

b. yolov5l.xml

其中depth_multiple=1,即gd=1

和上面的计算方式相同,第一个CSP1结构中,n=3,带入代码中,结果n=3,因此为CSP1_3。

下面第二个CSP1和第三个CSP1结构都是同样的原理。

2.3.4 Yolov5四种网络的宽度

86783a1f21e56fdd46e4b2d18d991fb1.png

(1)不同网络的宽度:

如上图表格中所示,四种yolov5结构在不同阶段的卷积核的数量都是不一样的,因此也直接影响卷积后特征图的第三维度,即厚度,大白这里表示为网络的宽度

a.以Yolov5s结构为例,第一个Focus结构中,最后卷积操作时,卷积核的数量是32个,因此经过Focus结构,特征图的大小变成304*304*32

而yolov5m的Focus结构中的卷积操作使用了48个卷积核,因此Focus结构后的特征图变成304*304*48。yolov5l,yolov5x也是同样的原理。

b. 第二个卷积操作时,yolov5s使用了64个卷积核,因此得到的特征图是152*152*64。而yolov5m使用96个特征图,因此得到的特征图是152*152*96。yolov5l,yolov5x也是同理。

c. 后面三个卷积下采样操作也是同样的原理,这样大白不过多讲解。

四种不同结构的卷积核的数量不同,这也直接影响网络中,比如CSP1,CSP2等结构,以及各个普通卷积,卷积操作时的卷积核数量也同步在调整,影响整体网络的计算量。

大家最好可以将结构图和前面第一部分四个网络的特征图链接,对应查看,思路会更加清晰。

当然卷积核的数量越多,特征图的厚度,即宽度越宽,网络提取特征的学习能力也越强

 

2.3.4 Yolov5四种网络的宽度

ce9026d1bfa6d0b7fb58922733cb80f3.png

(1)不同网络的宽度:

如上图表格中所示,四种yolov5结构在不同阶段的卷积核的数量都是不一样的,因此也直接影响卷积后特征图的第三维度,即厚度,大白这里表示为网络的宽度

a.以Yolov5s结构为例,第一个Focus结构中,最后卷积操作时,卷积核的数量是32个,因此经过Focus结构,特征图的大小变成304*304*32

而yolov5m的Focus结构中的卷积操作使用了48个卷积核,因此Focus结构后的特征图变成304*304*48。yolov5l,yolov5x也是同样的原理。

b. 第二个卷积操作时,yolov5s使用了64个卷积核,因此得到的特征图是152*152*64。而yolov5m使用96个特征图,因此得到的特征图是152*152*96。yolov5l,yolov5x也是同理。

c. 后面三个卷积下采样操作也是同样的原理,这样大白不过多讲解。

四种不同结构的卷积核的数量不同,这也直接影响网络中,比如CSP1,CSP2等结构,以及各个普通卷积,卷积操作时的卷积核数量也同步在调整,影响整体网络的计算量。

大家最好可以将结构图和前面第一部分四个网络的特征图链接,对应查看,思路会更加清晰。

当然卷积核的数量越多,特征图的厚度,即宽度越宽,网络提取特征的学习能力也越强

 

4 小目标分割检测

目标检测发展很快,但对于小目标的检测还是有一定的瓶颈,特别是大分辨率图像小目标检测。比如7920*2160,甚至16000*16000的图像。

0c3306751ee5477238d8dbd537c4d5cc.png

图像的分辨率很大,但又有很多小的目标需要检测。但是如果直接输入检测网络,比如yolov3,检出效果并不好。

主要原因是:

(1)小目标尺寸

以网络的输入608*608为例,yolov3、yolov4,yolov5中下采样都使用了5次,因此最后的特征图大小是19*19,38*38,76*76。

三个特征图中,最大的76*76负责检测小目标,而对应到608*608上,每格特征图的感受野是608/76=8*8大小。

83fc38e3f353e71835101817086fd21a.png

再将608*608对应到7680*2160上,以最长边7680为例,7680/608*8=101。

即如果原始图像中目标的宽或高小于101像素,网络很难学习到目标的特征信息。

(PS:这里忽略多尺度训练的因素及增加网络检测分支的情况)

(2)高分辨率

而在很多遥感图像中,长宽比的分辨率比7680*2160更大,比如上面的16000*16000,如果采用直接输入原图的方式,很多小目标都无法检测出。

(3)显卡爆炸

很多图像分辨率很大,如果简单的进行下采样,下采样的倍数太大,容易丢失数据信息。

但是倍数太小,网络前向传播需要在内存中保存大量的特征图,极大耗尽GPU资源,很容易发生显存爆炸,无法正常的训练及推理。

因此可以借鉴2018年YOLT算法的方式,改变一下思维,对大分辨率图片先进行分割,变成一张张小图,再进行检测。

需要注意的是:

为了避免两张小图之间,一些目标正好被分割截断,所以两个小图之间设置overlap重叠区域,比如分割的小图是960*960像素大小,则overlap可以设置为960*20%=192像素。

每个小图检测完成后,再将所有的框放到大图上,对大图整体做一次nms操作,将重叠区域的很多重复框去除。

这样操作,可以将很多小目标检出,比如16000*16000像素的遥感图像。

注意:这里关于小图检测后,放到大图上的方法,发现评论中,很多的同学可能想的过于复杂了,采用的方式,其实按照在大图上裁剪的位置,直接回归到大图即可。

此外,国内还有一个10亿像素图像目标检测的比赛,也是用的这样的方式,大白将其中一个讲解不错的视频,也放到这个,大家可以点击查看

af82d583460268629cf3b23e9d22c18e.png

无人机视角下,也有很多小的目标。大白也进行了测试,效果还是不错的。

比如下图是将原始大图->416*416大小,直接使用目标检测网络输出的效果:

212d37f73b83a269188869be8d2700bd.png

可以看到中间黄色框区域,很多汽车检测漏掉。

再使用分割的方式,将大图先分割成小图再对每个小图检测,可以看出中间区域很多的汽车都被检测出来:

f43644e84a752cce2f27aac1a533633a.png

不过这样的方式有优点也有缺点:

优点:

(1)准确性

分割后的小图,再输入目标检测网络中,对于最小目标像素的下限会大大降低。

比如分割成608*608大小,送入输入图像大小608*608的网络中,按照上面的计算方式,原始图片上,长宽大于8个像素的小目标都可以学习到特征。

 

(2)检测方式

在大分辨率图像,比如遥感图像,或者无人机图像,如果无需考虑实时性的检测,且对小目标检测也有需求的项目,可以尝试此种方式。

缺点:

(1)增加计算量

比如原本7680*2160的图像,如果使用直接大图检测的方式,一次即可检测完。

但采用分割的方式,切分成N张608*608大小的图像,再进行N次检测,会大大增加检测时间。

借鉴Yolov5的四种网络方式,我们可以采用尽量轻的网络,比如Yolov5s网络结构或者更轻的网络。

当然Yolov4和Yolov5的网络各有优势,我们也可以借鉴Yolov5的设计方式,对Yolov4进行轻量化改造,或者进行剪枝。

 

strongsort介绍

三个要点
✔️ 改进了MOT任务中的早期深度模型DeepSORT,实现了SOTA!
✔️ 提出了两种计算成本较低的后处理方法AFLink和GSI,以进一步提高准确度!
✔️ AFLink和GSI提高了几个模型的准确性,不仅仅是所提出的方法!

 

性能指标图

7a306ed2c9959619ce3910e5223fe4d6.png

首先,我附上了MOT17和MOT20的准确性比较,这表明了StrongSORT的优越性。现在,VGGNet,一个著名的特征提取器,最近作为RepVGG,一个更强大的版本回归。以类似的标题回归的是StrongSORT:让DeepSORT再次伟大,其中DeepSORT是一个早期的基于深度学习的物体追踪模型,而StrongSORT是对这个早期模型的改进,采用最新的技术实现SOTAStrongSORT是一个通过用最新技术在初始模型上进行改进而实现SOTA的模型。让我们先快速看一下这些改进。

DeepSORT
+BoT:改进的外观特征提取器
+EMA:带有惯性项的特征更新
+NSA:用于非线性运动的卡尔曼滤波器
+MC:包括运动信息的成本矩阵
+ECC:摄像机运动更正
+woC:不采用级联算法
=StrongSORT
+AF链接:仅使用运动信息的全局链接
=StrongSORT+
+GSI内插:通过高斯过程对检测误差进行内插
=StrongSORT++

与其说从根本上改变了结构,不如说是改进了跟踪所需的特征提取、运动信息和成本矩阵的处理。StrongSORT++将AFLink(离线处理)和GSI插值(后处理)应用于改进的StrongSORT,是一个更加精确的模型。我个人认为关键在于此,所以如果你能读到最后,我将很高兴。让我们快速了解一下StrongSORT。

系统定位

本节首先解释了这一方法的系统定位。想了解该方法细节的人可以跳过这一节。深度学习跟踪方法始于DeepSORT。后来,出现了FairMOT和ByteTrack等新方法,并超越了DeepSORT的准确性。在提出新的追踪方法的过程中,出现了两种追踪方法。DeepSORT属于SDE,其检测器是单独准备的。它属于SDE。然而,在本文中,DeepSORT的低准确性并不是因为方法不好,而只是因为它的年龄,其动机是,如果根据此后提出的最新元素技术进行改进,就可以使它变得足够准确。我们有动力去改进它。
改进DeepSORT的原因还有很多。首先,JDE方法的缺点是不容易训练:JDE同时训练检测和跟踪等不同任务的参数,所以模型容易发生冲突,从而限制了准确性。它还需要一个可以同时从检测到跟踪进行训练的数据集,这限制了训练的范围。相比之下,使用SDE,检测和跟踪模型可以被单独优化。最近,诸如ByteTrack这样的模型也被提出来,用于仅基于运动信息的高速跟踪,而没有任何外观信息,但这种模型指出了当目标的运动不简单时无法跟踪的问题。
因此,基于在基于DeepSORT的SDE方法中使用外观特征进行追踪是最佳的动机,提出了StrongSORT

效果展示

训练与预测

b96dadec53aa4d96abfcfe3a2b475e3d.png

7f4e0c2e26b04f6dbcf6de96d54d6a8a.jpeg

UI设计

将本次的实验使用pyqt打包,方便体验

31bb5ec76fc849eaa7a25c041f90cc09.png

c9868a7d76bb4bb195de3cbb37b2b511.png

界面其他功能展示

其他功能演示参考yolov5+deepsort文章

两万字深入浅出yolov5+deepsort实现目标跟踪,含完整代码, yolov,卡尔曼滤波估计,ReID目标重识别,匈牙利匹配KM算法匹配_yolov5 deepsort-CSDN博客

完整代码实现+UI界面

视频,笔记和代码,以及注释都已经上传网盘,放在主页置顶文章

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值