最小项
n个变量的逻辑乘,即与形式,每个变量以原变量或者反变量的形式出现一次。n个变量共有2n个最小项。用m表示,如ABC,表示为m0。
最小项 | A | B | 编号 |
---|---|---|---|
A’ B’ | 0 | 0 | m0 |
A’ B | 0 | 1 | m1 |
A B’ | 1 | 0 | m2 |
A B | 1 | 1 | m3 |
三变量卡诺图
BC A | 00 | 01 | 11 | 10 |
0 | m0 | m1 | m3 | m2 |
1 | m4 | m5 | m7 | m6 |
四变量卡诺图
CD AB | 00 | 01 | 11 | 10 |
00 | m0 | m1 | m3 | m2 |
01 | m4 | m5 | m7 | m6 |
11 | m12 | m13 | m15 | m14 |
10 | m8 | m9 | m11 | m10 |
卡诺图化简
F=BC + A’B’D’ + A’C’D
具有约束条件的卡诺图化简
{
F
=
A
B
′
C
′
+
A
′
B
C
′
A
′
B
′
C
′
+
A
′
B
C
+
A
B
′
C
+
A
B
C
′
+
A
B
C
=
0
\left\{ \begin{array}{c}F = AB'C' + A'BC'\\A'B'C' +A'BC + AB'C+ ABC' + ABC = 0\end{array}\right.
{F=AB′C′+A′BC′A′B′C′+A′BC+AB′C+ABC′+ABC=0
注:大括号使用代码$$\left\{ \begin{array}{c}x=2\\x=3\end{array}\right. $$
由逻辑式得到卡诺图如下
化简得到的逻辑式为:
{
F
=
C
′
A
′
B
′
C
′
+
A
B
+
A
C
+
B
C
=
0
\left\{ \begin{array}{c}F = C'\\A'B'C' + AB +AC +BC = 0\end{array}\right.
{F=C′A′B′C′+AB+AC+BC=0
注: 6相圈不存在,应由两个4相圈构成