大模型RAG系统入门到精通(五)RAG从理论到实践

第五章:RAG的艺术 - 从理论到实践的整合之道

我们将把前面所学的所有概念串联起来,看看如何在实际中运用这些知识。系好安全带,我们开始这段激动人心的旅程吧!

5.1 三种整合方式的利弊权衡

还记得我们讨论过的三种将外部数据整合到LLM中的方式吗?让我们再深入探讨一下它们各自的优缺点和适用场景。

1. 上下文方法(Context)

优势:

- 灵活性拉满:想换数据就换,LLM完全不用动  
- 透明度高:我们清楚地知道模型用了哪些额外信息  

局限性:

- 上下文长度有限:就像塞鸭子,塞太多LLM也消化不了  
- 检索质量决定生死:垃圾进垃圾出,检索不好全盘皆输  

适用场景:

- 需要频繁更新知识库的应用  
- 对结果可解释性要求高的场景  

2. 小模型方法(Small model)

优势:

- 专业性强:可以为特定任务定制"小助手"  
- 模块化设计:想换就换,主LLM不受影响  

局限性:

- 训练成本高:又要准备数据又要训练,累死个人  
- 集成难度大:让"小助手"和LLM无缝配合不是易事  

适用场景:

- 有特定复杂任务需要处理的应用  
- 计算资源有限,无法频繁调用大型LLM的情况  

3. 微调方法(Fine-tuning)

优势:

- 性能王者:在特定领域可以达到最佳表现  
- 推理效率高:不需要额外的检索步骤  

局限性:

- 计算成本高:微调大模型,没个几千块GPU别想了  
- 灵活性降低:一旦微调,可能会影响其他领域的表现  

适用场景:

- 特定领域的专业应用  
- 有大量高质量领域数据可用的情况  

5.2 四个查询层次的技术方案

现在,让我们看看如何针对不同复杂度的查询选择合适的技术方案。

  1. 显式事实查询:基础RAG就够了这就像是在图书馆找一本特定的书。我们用基础的RAG就能搞定,主要是要把检索做好。代码示例:
from haystack import Pipeline
from haystack.nodes import BM25Retriever, FARMReader

retriever = BM25Retriever(document_store)
reader = FARMReader("deepset/roberta-base-squad2")

pipe = Pipeline()
pipe.add_node(component=retriever, name="Retriever", inputs=["Query"])
pipe.add_node(component=reader, name="Reader", inputs=["Retriever"])

result = pipe.run(query="谁发明了电话?")
print(result['answers'][0].answer)

  1. 隐式事实查询:迭代RAG、图/树RAG、RAG+SQL这就像是要写一篇研究报告,需要查阅多本书籍并整合信息。

代码示例(迭代RAG):

def iterative_rag(query, max_iterations=3):
    context = ""
    for i in range(max_iterations):
        result = pipe.run(query=query + " " + context)
        new_info = result['answers'][0].answer
        context += new_info
        if "完整回答" in new_info:
            break
    return context

final_answer = iterative_rag("比较太阳系中最大和最小的行星")
print(final_answer)
- 迭代RAG:多轮检索,每轮基于之前的结果继续深入  
- 图/树RAG:构建知识图谱,进行多跳推理  
- RAG+SQL:结合结构化数据查询,处理复杂的数值计算  
  1. 可解释推理查询:提示调优、思维链提示这就像是要解决一道复杂的数学题,需要一步步推导。

代码示例(思维链提示):

prompt = """
问题:一个水箱可以在6小时内装满水。现在已经装了2小时,还剩下3/4没装满。请问这个水箱实际上需要多长时间才能装满?

让我们一步步思考:
1) 首先,我们知道正常情况下,水箱需要6小时装满。
2) 现在已经装了2小时,还剩3/4没装满。
3) 这意味着2小时内只装满了1/4的水箱。
4) 如果2小时装满1/4,那么装满整个水箱需要的时间是:
   2小时 * 4 = 8小时

因此,这个水箱实际上需要8小时才能装满。

是否需要我进一步解释这个推理过程?
"""

response = openai.Completion.create(engine="gpt4", prompt=prompt, max_tokens=150)
print(response.choices[0].text.strip())
- 提示调优:设计特定的提示模板,引导LLM进行推理  
- 思维链提示:让LLM像人类一样,一步步写出推理过程  
  1. 隐藏推理查询:离线学习、上下文学习、微调这就像是要预测未来的股市走势,需要整合大量信息并进行复杂的推理。

代码示例(微调):

from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer

model_name = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# 准备特定领域的数据集
train_dataset = ...  # 你的训练数据
eval_dataset = ...   # 你的评估数据

training_args = TrainingArguments(output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8)

trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset)
trainer.train()

# 使用微调后的模型
query = "预测未来5年的全球经济趋势"
input_ids = tokenizer.encode(query, return_tensors="pt")
output = model.generate(input_ids, max_length=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))
- 离线学习:预先学习领域知识,构建专门的知识库  
- 上下文学习:动态选择最相关的上下文进行学习  
- 微调:在特定领域数据上微调LLM  

5.3 知己知彼,百战不殆

在开发RAG应用之前,我们需要做的第一件事是什么?没错,就是深入理解我们要解决的问题。这就像是要打仗前先要了解敌情一样重要。

  1. 理解目标任务:我们到底要解决什么问题?是简单的信息检索还是复杂的推理任务?

  2. 确定查询复杂度:我们的用户会问什么类型的问题?是简单的事实查询还是需要深度推理的问题?

  3. 评估数据情况:我们有什么样的数据可用?数据的质量如何?是否需要预处理?

  4. 考虑资源限制:我们有多少计算资源?对响应速度有什么要求?

只有充分理解了这些因素,我们才能选择最适合的技术方案。记住,没有一种方法是万能的,关键是找到最适合你特定需求的方法。

5.4 大杂烩才是真正的美味

在实际应用中,我们经常会遇到各种类型的查询混杂在一起的情况。这就像是要做一道大杂烩,需要各种食材和调料的完美配合。

我们需要设计一个智能的路由系统,能够识别不同类型的查询,并将其导向最合适的处理模块。这个系统可能看起来像这样:

def query_router(query):
    if is_simple_fact_query(query):
        return basic_rag(query)
    elif is_implicit_fact_query(query):
        return iterative_rag(query)
    elif is_interpretable_reasoning_query(query):
        return chain_of_thought_prompting(query)
    elif is_hidden_reasoning_query(query):
        return fine_tuned_model(query)
    else:
        return fallback_method(query)

def process_query(query):
    response = query_router(query)
    return post_process(response)

# 使用示例
user_query = "请解释量子纠缠的原理及其在量子计算中的应用"
answer = process_query(user_query)
print(answer)

这个路由系统就像是一个经验丰富的总厨,知道每种原料应该如何处理,最终做出一道美味的大餐。

结语

构建一个优秀的RAG系统,就像是在进行一场复杂的厨艺比赛。你需要了解每种原料(数据)的特性,掌握各种烹饪技巧(技术方法),并且要有足够的创意来应对各种挑战。

在这里插入图片描述

记住,理论和实践同样重要。多尝试,多总结,你就会发现RAG的魅力所在。谁知道呢,或许也许下一个改变AI世界的突破,就来自于你的灵感。

论文原文:《Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely》


如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值