多模态大型语言模型(MLLM)的发展得益于大型语言模型(LLM)和大型视觉模型(LVM)领域的持续进步。随着LLM在语言理解与推理能力上的增强,其在处理语言任务上的表现日益突出。尽管如此,LLM在视觉信息的感知与理解上存在局限。与此同时,LVM在视觉任务上取得了显著进展,但推理能力尚需提升。
一、MLLM的基本结构
在MLLM中,模态编码器负责将原始的多模态信息,如图像或音频,转换为紧凑的表示形式。通常,这些编码器是基于大规模图像-文本对预训练的模型,如CLIP的视觉编码器,它能有效将图像信息转化为向量表示,并与文本信息对齐。不同的模型在编码器的选择和优化上有所侧重。
EVA-CLIP 编码器
MiniGPT-4采用了EVA-CLIP编码器,该编码器在性能上优于标准CLIP,同时训练成本更低。EVA-CLIP通过使用EVA模型的预训练权重初始化图像编码器,提高了起始性能。此外,LAMB优化器的使用,特别适合大批量训练,通过自适应元素级更新和层级学习率,提高了训练效率并加速了模型的收敛。FLIP技术的应用,通过在训练过程中随机遮蔽图像标记,减少了时间复杂度,使得批量大小可以增加一倍而无需额外的内存开销。
基于卷积的 ConvNext-L 编码器
Osprey选择了基于卷积的ConvNext-L编码器,该编码器利用高分辨率和多层次特征,尤其在开放词汇分割任务中表现出高效率。Osprey基于像素级别的任务,使用基于CNN的编码器可以在支持高分辨率的同时,保持训练效率和推理速度,而不牺牲性能。
无编码器的架构
Fuyu-8b采用了纯解码器转换器,图像块被线性投影到转换器的第一层,绕过了嵌入查找过程,将普通Transformer解码器视为图像转换器。这种设计增强了模型对灵活输入分辨率的适应性。
二、模态编码器的优化策略
在多模态编码器的选择上,研究人员会考虑分辨率、参数规模和预训练语料库等因素。研究表明,使用更高分辨率的图像输入能够提升模型表现。为此,不同的模型采用了多种策略来优化编码器。
直接缩放输入分辨率
Qwen-VL和LLaVA-1.5通过将图像分割成更小的图像块来提高模型的输入分辨率。LLaVA-1.5使用CLIPViT-L-336px编码器,并发现高分辨率能够提升模型性能。通过将图像分割成视觉编码器原本训练时分辨率的小图像块,并分别对其进行编码,然后将这些特征图组合成一个大特征图,最终输入到LLM中,这种方式保留了高分辨率的细节,并通过降采样图像的特征与合并后的特征图相结合,提供了全局上下文。
CogAgent采取了双编码器机制来处理高分辨率和低分辨率图像。高分辨率特征通过交叉注意力注入到低分辨率分支中,增强了模型对高分辨率输入的支持。CogAgent允许输入1120×1120分辨率的图像,而不需要对视觉语言模型的其他部分做出调整,只需对高分辨率交叉模块进行预训练即可。
分块法
Monkey和SPHINX将大图像分割成小块,再将这些子图像与降采样的高分辨率图像一起输入图像编码器。Monkey支持1344×896的分辨率输入,通过将大图像分为6个448×448的图片块,再输入到VIT模型中。SPHINX使用混合视觉编码器将高分辨率的图片分块,并与低分辨率全图一起进行编码,捕获图像的局部和全局特征。
三、预训练的LLM
在MLLMs中的语言模型部分通常采用Causal Decoder架构,遵循如GPT-3的设计模式。Flan-T5系列是较早应用于MLLM的LLMs之一,开源的LLaMA系列和Vicuna系列则是当前较为常用的LLMs。扩大LLMs的参数规模通常能够带来显著的性能提升,这种效果在LLaVa-1.5和LLava-Next的研究中得到了验证。
同时,一些研究致力于开发轻量化的LLMs,以便在移动设备上实现高效部署。例如,MobileVLM系列使用了缩小版的LLaMA,在移动处理器上实现了高效推理。混合专家(Mixture of Experts,MoE)架构的研究引起了越来越多的关注,与密集模型不同,稀疏架构通过选择性激活参数,能够在不增加计算成本的情况下扩大模型的总参数规模。
四、模态接口
由于多模态模型的端到端训练难度和成本较高,目前大多数模型都采用了基于模态对齐的两种常用方法:构造可学习的连接器和利用专家模型将图像信息转换为语言形式,再输入到LLM中。这两种方法都旨在缩小不同模态之间的差距,使得模型能够更好地理解和处理多模态输入。
模态对齐的方法有很多种,下面总结常见的3种:
Token级融合
通过将编码器输出的特征转换为token,并在发送给LLM之前与文本token连接在一起。例如,BLIP-2首次实现了这种基于查询的token提取方式,随后Video-llama、InstructBLIP和X-llm等模型继承了这一方法。这种Q-Former风格的方法将视觉token压缩成更少数量的表示向量,简化了信息的传递和处理过程。
特征级融合
特征级融合则在文本和视觉特征之间引入了更深度的交互。例如,Flamingo通过在LLM的Transformer层之间插入额外的交叉注意力层,从而用外部视觉线索增强语言特征。CogVLM通过在每个Transformer层中插入视觉专家模块,实现了视觉和语言特征的双向交互与融合。
使用专家模型融合
在多模态模型中,专家模型被广泛应用于模态对齐的任务中,特别是当需要将图像或其他非语言模态的输入转换为语言形式时。这类方法的核心思想是利用现有的强大模型进行模态转换,从而避免重新训练一个复杂的多模态对齐模块。
五、MLLM的训练策略和训练数据
在MLLMs的开发过程中,训练策略和数据处理方法对于模型的性能提升至关重要。通常,训练分为三个主要阶段:预训练,指令微调和对齐微调。
预训练
预训练的主要目标是对齐不同模态,同时让模型学习多模态世界中的丰富知识。这个阶段通常需要大规模的文本配对数据,这些数据能够为模型提供广泛的上下文和世界知识。在预训练过程中,常见的输入格式是将一段描述性文本与对应的图像、音频或视频配对,通过交叉熵损失函数进行训练。
指令微调
指令微调是训练MLLMs的另一关键阶段,其目的是让模型更好地理解和执行用户的指令。在这一阶段,模型通过学习如何泛化到未见过的任务,从而提升零样本的性能。
对齐微调
为了提高MLLMs在特定场景下的表现,对齐微调是一项不可忽视的关键步骤。对齐微调的目标是减少模型在生成过程中可能出现的“幻觉”现象,确保生成内容与输入信息保持一致。
六、MLLM的性能评估方法
在MLLMs的开发过程中,评估模型性能是确保其应用效果的重要步骤。评估方法包括封闭式问题和开放式问题的评估。
七、能力扩展
MLLMs正在被扩展以支持更多的模态输入和输出,例如,ImageBind-LLM支持编码多种数据,而Next-gpt和Emu等模型则可以生成多模态响应。
八、幻觉问题及其缓解方法
幻觉问题,即模型生成的内容与实际输入不符的现象,是MLLMs生成过程中的一个挑战。幻觉问题主要包括存在性幻觉、属性幻觉和关系幻觉。为了更准确地评估幻觉现象,新一类的评估指标应运而生,同时,研究者们提出了多种缓解幻觉的方法。
九、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】