对数均方根误差(Logarithmic Root Mean Squared Error, log-RMSE)

这个损失函数表示的是对数均方根误差(Logarithmic Root Mean Squared Error, log-RMSE),它是回归任务中的一种评估指标。在某些情况下,特别是当目标变量的范围很大或分布偏斜时,使用对数误差而不是原始误差来衡量模型性能可能更合适。对数误差可以使得评估过程更加关注相对误差,而非绝对误差。

损失函数的具体形式如下:

1 n ∑ i = 1 n ( log ⁡ y i − log ⁡ y ^ i ) 2 \sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log y_i -\log \hat{y}_i\right)^2} n1i=1n(logyilogy^i)2

其中:

  • n n n 表示样本数量。
  • y i y_i yi 表示第 i i i 个样本的真实目标值。
  • y ^ i \hat{y}_i y^i 表示第 i i i 个样本的预测目标值。
  • log ⁡ \log log 表示自然对数。

损失函数的计算过程如下:

  1. 对真实目标值 y i y_i yi 和预测目标值 y ^ i \hat{y}_i y^i 分别取自然对数,得到 log ⁡ y i \log y_i logyi log ⁡ y ^ i \log \hat{y}_i logy^i。通过这一步,我们将原始目标值和预测值转换为对数尺度,使得评估过程关注相对误差。

  2. 计算每个样本的对数误差的平方: ( log ⁡ y i − log ⁡ y ^ i ) 2 (\log y_i - \log \hat{y}_i)^2 (logyilogy^i)2。这一步可以衡量每个样本的预测值与真实值在对数尺度上的差距。

  3. 计算所有样本对数误差平方的平均值: 1 n ∑ i = 1 n ( log ⁡ y i − log ⁡ y ^ i ) 2 \frac{1}{n}\sum_{i=1}^n\left(\log y_i -\log \hat{y}_i\right)^2 n1i=1n(logyilogy^i)2。这一步可以得到整体的误差度量。

  4. 计算平均对数误差平方的平方根: 1 n ∑ i = 1 n ( log ⁡ y i − log ⁡ y ^ i ) 2 \sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log y_i -\log \hat{y}_i\right)^2} n1i=1n(logyilogy^i)2 。这一步可以将误差度量转换回原始尺度,便于解释和比较。

对数均方根误差具有以下优点:

  • 对数误差可以降低大数值目标变量的影响,使得评估过程更关注相对误差。这在目标变量具有较大范围或偏斜分布的情况下尤为有用。
  • 平方根操作可以放大小误差,从而使得模型更关注那些具有较大误差的样本。这有助于模型更好地拟合数据。

然而,需要注意的是,对数均方根误差并不适用于所有情况。例如,当目标变量存在负值时,对数均方根误差将无法计算,因为负数的自然对数是未定义的。在这种情况下,您可能需要选择其他误差度量,如均方误差(MSE)或平均绝对误差(MAE)等。

总之,对数均方根误差(log-RMSE)损失函数对原始目标值和预测值进行对数转换,关注相对误差,从而使评估过程更加鲁棒。这种损失函数在目标变量具有较大范围或偏斜分布的情况下非常有用。然而,在目标变量存在负值的情况下,您需要选择其他误差度量。

如何推导出的?

  1. 首先,我们关心的是预测值( y ^ \hat{y} y^)与真实值( y y y)之间的相对误差: y ^ y \frac{\hat{y}}{y} yy^
  2. 要求预测值与真实值的对数之差的绝对值( ∣ log ⁡ y − log ⁡ y ^ ∣ |\log y - \log \hat{y}| logylogy^)小于等于某个给定的阈值( δ \delta δ): ∣ log ⁡ y − log ⁡ y ^ ∣ ≤ δ |\log y - \log \hat{y}| \leq \delta logylogy^δ。这意味着我们希望预测值和真实值之间的对数尺度上的差距不超过 δ \delta δ
  3. 利用不等式的性质,我们可以将上述不等式转换为: e − δ ≤ y ^ y ≤ e δ e^{-\delta} \leq \frac{\hat{y}}{y} \leq e^\delta eδyy^eδ。这一步说明,当预测值与真实值的对数之差的绝对值小于等于 δ \delta δ
    时,预测值与真实值之间的相对误差被约束在一个有限的范围内。

因此,当我们使用对数均方根误差作为损失函数时,我们实际上是在关注预测值与真实值之间的相对误差。这在处理具有较大范围或偏斜分布的目标变量时非常有用,因为相对误差对于这些情况更具鲁棒性。通过最小化这个损失函数,模型将更加关注预测值与真实值之间的相对误差,而不是绝对误差。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想要身体健康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值