Matlab实现CPO-CNN-LSTM-Attention冠豪猪优化卷积长短期记忆神经网络注意力机制多变量回归预测

使用Matlab2021b,通过CPO优化的CNN-LSTM-Attention模型进行多变量回归预测。数据集为excel格式,主程序为main.m,输出包括R2、MSE、MAE、MAPE等评价指标。模型引入了SEBlock通道注意力机制,提升特征选择效果。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

文章概述

1.Matlab实现CPO-CNN-LSTM-Attention冠豪猪优化卷积长短期记忆神经网络注意力机制多变量回归预测;

2.运行环境为Matlab2021b;

3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测,

main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值