基于GWO-GPR灰狼算法优化高斯过程回归的多输入单输出回归预测(MATLAB完整源码和数据)

该博客分享了基于灰狼算法(GWO)优化的高斯过程回归(GPR)在多输入单输出回归预测中的应用。提供了完整的MATLAB源码和数据,适用于2023年及以后的MATLAB环境。代码经过手工编写,注释详细,可直接运行,并包含R2、MAE、MSE、RMSE等多种评价指标。订阅专栏可获取全部代码。
摘要由CSDN通过智能技术生成


效果一览

在这里插入图片描述

文章概述

基于GWO-GPR灰狼算法优化高斯过程回归的多输入单输出回归预测(MATLAB完整源码和数据)
MATLAB完整源码和数据,保证原始程序运行,不提供讲解及其他服务。
纯手工制作,非工具箱导出,代码质量极高,注释清晰,方便替换
1.基于GWO-GPR灰狼算法优化高斯过程回归的多输入单输出回归预测(MATLAB完整源码和数据)
2.输入多个特征,输出单个变量,多输入单输出回归预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.算法优化参数为:优化核函数超参数 sigma,标准差,初始噪声标准差;
5.excel数据,方便替换,运行环境2023及以上。

订阅专栏只能获取专栏内一份代码。

部分源码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值