【Github项目】hawp部署教程

部署运行你感兴趣的模型镜像

一、适用环境

1、操作系统:Windows,Linux

2、准备条件:Anaconda,hawp项目压缩包,GPU PyTorch,部分依赖库,pth模型,数据集。

二、操作步骤

1、创建并激活hawp虚拟环境(需提前安装Anaconda

(1)创建虚拟环境

(2)激活虚拟环境

2、下载项目压缩包

(1)Windows系统

①下载

https://github.com/cherubicXN/hawp/archive/refs/heads/main.zip

②解压并进入项目目录(将路径更改为自己的项目解压路径

cd D:\hawp-main

(2)Linux系统

①下载

git  clone  https://github.com/cherubicXN/hawp.git

②进入项目目录

cd  hawp

3、执行命令递归安装hawp(安装过程会自动安装CPU PyTorch

pip install -e .

4、安装GPU PyTorch覆盖之前安装的CPU,需要安装对应CUDA

pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118

5、测试CUDA是否可用

python -c "import torch; print(torch.cuda.is_available())" 

6、安装依赖库(加镜像下载速度快

pip install -r requirement.txt    -i  https://mirrors.aliyun.com/pypi/simple

7、下载hawpv3模型

(1)Windows系统:

①Win系统直接下载模型

https://github.com/cherubicXN/hawp-torchhub/releases/download/HAWPv3/hawpv3-imagenet-03a84.pth

②项目根目录创建checkpoints文件,将下载的模型放入文件夹中。

(2)Linux系统(项目根目录执行命令安装模型):

sh downloads.sh

8、Windows系统运行代码(将img后面索引的路径换为自己的图片路径

python -m hawp.ssl.predict --ckpt checkpoints/hawpv3-imagenet-03a84.pth   --threshold 0.05    --img D:/truth/*.jpeg    --saveto docs/figures/dtu-24 --ext png

9、Linux系统运行代码(将img后面索引的路径换为自己的图片路径

python -m hawp.ssl.predict --ckpt checkpoints/hawpv3-imagenet-03a84.pth  \
  --threshold 0.05  \
  --img ~/datasets/DTU/scan24/image/*.png \ 
  --saveto docs/figures/dtu-24 --ext png \

运行效果图:

三、补充与扩展

1、Wireframe数据集提取链接:

https://pan.baidu.com/s/11CKr5s0zHnuVKsJVXianxA?pwd=wf18

您可能感兴趣的与本文相关的镜像

PyTorch 2.9

PyTorch 2.9

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值