一、适用环境
1、操作系统:Windows,Linux
2、准备条件:Anaconda,hawp项目压缩包,GPU PyTorch,部分依赖库,pth模型,数据集。
二、操作步骤
1、创建并激活hawp虚拟环境(需提前安装Anaconda)
(1)创建虚拟环境

(2)激活虚拟环境

2、下载项目压缩包
(1)Windows系统
①下载
https://github.com/cherubicXN/hawp/archive/refs/heads/main.zip
②解压并进入项目目录(将路径更改为自己的项目解压路径)
cd D:\hawp-main

(2)Linux系统
①下载
git clone https://github.com/cherubicXN/hawp.git
②进入项目目录
cd hawp
3、执行命令递归安装hawp(安装过程会自动安装CPU PyTorch)
pip install -e .
4、安装GPU PyTorch(覆盖之前安装的CPU,需要安装对应CUDA)
pip install torch==2.0.0 torchvision==0.15.1 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu118
5、测试CUDA是否可用
python -c "import torch; print(torch.cuda.is_available())"
6、安装依赖库(加镜像下载速度快)
pip install -r requirement.txt -i https://mirrors.aliyun.com/pypi/simple
7、下载hawpv3模型
(1)Windows系统:
①Win系统直接下载模型
https://github.com/cherubicXN/hawp-torchhub/releases/download/HAWPv3/hawpv3-imagenet-03a84.pth
②项目根目录创建checkpoints文件,将下载的模型放入文件夹中。

(2)Linux系统(项目根目录执行命令安装模型):
sh downloads.sh
8、Windows系统运行代码(将img后面索引的路径换为自己的图片路径)
python -m hawp.ssl.predict --ckpt checkpoints/hawpv3-imagenet-03a84.pth --threshold 0.05 --img D:/truth/*.jpeg --saveto docs/figures/dtu-24 --ext png
9、Linux系统运行代码(将img后面索引的路径换为自己的图片路径)
python -m hawp.ssl.predict --ckpt checkpoints/hawpv3-imagenet-03a84.pth \
--threshold 0.05 \
--img ~/datasets/DTU/scan24/image/*.png \
--saveto docs/figures/dtu-24 --ext png \
运行效果图:

三、补充与扩展
1、Wireframe数据集提取链接:
https://pan.baidu.com/s/11CKr5s0zHnuVKsJVXianxA?pwd=wf18
1万+

被折叠的 条评论
为什么被折叠?



