✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在当今数据驱动的世界中,数据回归预测是一项重要的任务。它可以帮助我们预测未来的趋势和模式,为决策提供有力的支持。然而,由于数据的复杂性和噪声的存在,准确地进行回归预测并不容易。为了解决这个问题,研究人员提出了许多机器学习算法,并不断改进它们的性能。

极限学习机(ELM)是一种新兴的机器学习算法,它在回归预测任务中表现出色。ELM的核心思想是通过随机生成一组隐含层神经元的权重和偏置,将输入数据映射到隐含层。然后,通过线性回归方法将隐含层的输出与目标值进行拟合。ELM具有训练速度快、泛化能力强等优点,因此在实际应用中得到了广泛的应用。

然而,ELM算法在处理一些复杂的问题时仍然存在一些挑战。为了进一步提高ELM的性能,研究人员将其与优化算法相结合,以寻找最佳的权重和偏置。灰狼算法(GWO)是一种基于群体智能的优化算法,模拟了灰狼群体的行为。它通过模拟灰狼的捕食行为来寻找最优解。将GWO与ELM相结合,可以有效地优化ELM的性能,提高回归预测的准确性。

GWO-ELM算法的实现过程如下。首先,通过随机生成一组灰狼的位置和速度来初始化灰狼种群。然后,根据每个灰狼的适应度值,选择最优的灰狼作为领导者。接下来,通过模拟灰狼的捕食行为,更新灰狼的位置和速度。最后,使用更新后的灰狼位置和速度来优化ELM的权重和偏置。重复这个过程,直到达到预定的停止条件。

通过将GWO与ELM相结合,我们可以获得更好的回归预测结果。实验证明,GWO-ELM算法在多个数据集上的表现优于传统的ELM算法。它能够更好地适应复杂的数据模式,提高回归预测的准确性和稳定性。

总结起来,ELM回归预测是一项重要的任务,可以帮助我们预测未来的趋势和模式。为了提高ELM算法的性能,我们可以使用灰狼算法进行优化。GWO-ELM算法通过模拟灰狼的捕食行为,优化ELM的权重和偏置,从而提高回归预测的准确性。实验证明,GWO-ELM算法在多个数据集上表现优于传统的ELM算法。因此,GWO-ELM算法是一种值得尝试的方法,可以在实际应用中取得良好的效果。

希望通过本文的介绍,读者对于基于灰狼算法优化极限学习机GWO-ELM实现数据回归预测有了更深入的了解。在未来的研究和实践中,我们可以进一步探索和改进这个方法,以应对更加复杂的数据回归预测问题。

⛄ 部分代码

% BS2RV.m - Binary string to real vector
%
% This function decodes binary chromosomes into vectors of reals. The
% chromosomes are seen as the concatenation of binary strings of given
% length, and decoded into real numbers in a specified interval using
% either standard binary or Gray decoding.
%
% Syntax:       Phen = bs2rv(Chrom,FieldD)
%
% Input parameters:
%
%               Chrom    - Matrix containing the chromosomes of the current
%                          population. Each line corresponds to one
%                          individual's concatenated binary string
%         representation. Leftmost bits are MSb and
%         rightmost are LSb.
%
%               FieldD   - Matrix describing the length and how to decode
%         each substring in the chromosome. It has the
%         following structure:
%
%        [len;    (num)
%         lb;    (num)
%         ub;    (num)
%         code;    (0=binary     | 1=gray)
%         scale;    (0=arithmetic | 1=logarithmic)
%         lbin;    (0=excluded   | 1=included)
%         ubin];    (0=excluded   | 1=included)
%
%         where
%        len   - row vector containing the length of
%          each substring in Chrom. sum(len)
%          should equal the individual length.
%        lb,
%        ub    - Lower and upper bounds for each
%          variable. 
%        code  - binary row vector indicating how each
%          substring is to be decoded.
%        scale - binary row vector indicating where to
%          use arithmetic and/or logarithmic
%          scaling.
%        lbin,
%        ubin  - binary row vectors indicating whether
%          or not to include each bound in the
%          representation range
%
% Output parameter:
%
%               Phen     - Real matrix containing the population phenotypes.

%
% Author: Carlos Fonseca,   Updated: Andrew Chipperfield
% Date: 08/06/93,    Date: 26-Jan-94

function Phen = bs2rv(Chrom,FieldD)

% Identify the population size (Nind)
%      and the chromosome length (Lind)
[Nind,Lind] = size(Chrom);

% Identify the number of decision variables (Nvar)
[seven,Nvar] = size(FieldD);

if seven ~= 7
  error('FieldD must have 7 rows.');
end

% Get substring properties
len = FieldD(1,:);
lb = FieldD(2,:);
ub = FieldD(3,:);
code = ~(~FieldD(4,:));
scale = ~(~FieldD(5,:));
lin = ~(~FieldD(6,:));
uin = ~(~FieldD(7,:));

% Check substring properties for consistency
if sum(len) ~= Lind,
  error('Data in FieldD must agree with chromosome length');
end

if ~all(lb(scale).*ub(scale)>0)
  error('Log-scaled variables must not include 0 in their range');
end

% Decode chromosomes
Phen = zeros(Nind,Nvar);

lf = cumsum(len);
li = cumsum([1 len]);
Prec = .5 .^ len;

logsgn = sign(lb(scale));
lb(scale) = log( abs(lb(scale)) );
ub(scale) = log( abs(ub(scale)) );
delta = ub - lb;

Prec = .5 .^ len;
num = (~lin) .* Prec;
den = (lin + uin - 1) .* Prec;

for i = 1:Nvar,
    idx = li(i):lf(i);
    if code(i) % Gray decoding
      Chrom(:,idx)=rem(cumsum(Chrom(:,idx)')',2);
    end
    Phen(:,i) = Chrom(:,idx) * [ (.5).^(1:len(i))' ];
    Phen(:,i) = lb(i) + delta(i) * (Phen(:,i) + num(i)) ./ (1 - den(i));
end

expand = ones(Nind,1);
if any(scale)
  Phen(:,scale) = logsgn(expand,:) .* exp(Phen(:,scale));
end

⛄ 运行结果

Matlab 灰狼优化算法优化极限学习机(GWO-ELM)回归预测_数据

Matlab 灰狼优化算法优化极限学习机(GWO-ELM)回归预测_路径规划_02

Matlab 灰狼优化算法优化极限学习机(GWO-ELM)回归预测_无人机_03

⛄ 参考文献

[1] 刘振男、杜尧、韩幸烨、和鹏飞、周正模、曾天山.基于遗传算法优化极限学习机模型的干旱预测——以云贵高原为例[J].人民长江, 2020, 51(8):6.DOI:CNKI:SUN:RIVE.0.2020-08-003.

[2] 郑小霞,蒋海生,刘静,等.基于变分模态分解与灰狼算法优化极限学习机的滚动轴承故障诊断[J].轴承, 2021(9):6.

[3] 王桥,魏孟,叶敏,等.基于灰狼算法优化极限学习机的锂离子电池SOC估计[J].储能科学与技术, 2021.DOI:10.19799/j.cnki.2095-4239.2020.0389.

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合