车间调度|基于粒子群算法求解置换流水车间调度问题PFSP附Matlab代码

本文介绍了粒子群算法在解决车间调度问题,尤其是置换流水车间调度(PFSP)中的应用,通过全局搜索和并行计算提高生产效率和降低成本。算法流程包括初始化、适应度计算、更新最优解等步骤,并讨论了其优点如全局搜索能力、并行性和鲁棒性。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在现代制造业中,车间调度是一个至关重要的问题。它涉及到如何安排和优化生产过程,以最大程度地提高生产效率和降低成本。其中,置换流水车间调度问题(Permutation Flowshop Scheduling Problem,PFSP)是一种经典的车间调度问题,它要求在多个车间中安排多个作业的先后顺序,以最小化完成所有作业所需的时间。

为了解决PFSP问题,许多算法被提出和研究。其中一种常用的算法是粒子群算法(Particle Swarm Optimization,PSO)。粒子群算法是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体的行为。它通过不断地迭代和更新粒子的位置和速度来搜索最优解。

下面将介绍基于粒子群算法求解PFSP问题的算法流程:

  1. 初始化粒子群:随机生成一群粒子,并为每个粒子分配一个随机的初始位置和速度。

  2. 计算适应度:根据每个粒子的位置,计算其对应的调度方案的适应度。适应度可以是完成所有作业所需时间的倒数,也可以是其他评价指标。

  3. 更新全局最优解:在粒子群中,找到当前最优的调度方案,并将其作为全局最优解。

  4. 更新个体最优解:对于每个粒子,根据其自身历史最优解和当前最优解,更新其个体最优解。

  5. 更新速度和位置:根据粒子群算法的公式,更新每个粒子的速度和位置。速度的更新考虑了个体最优解和全局最优解的影响。

  6. 判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满意的调度方案。

  7. 迭代更新:如果未满足终止条件,则回到步骤3,继续迭代更新。

通过以上步骤,粒子群算法不断搜索和优化调度方案,直到找到最优解或满足终止条件。

粒子群算法具有以下优点:

  1. 全局搜索能力:通过全局最优解的更新,粒子群算法可以在搜索空间中进行全局搜索,找到更优的解决方案。

  2. 并行计算:粒子群算法的并行计算能力使得它能够处理大规模的车间调度问题,提高求解效率。

  3. 鲁棒性:粒子群算法对于问题的初始解和参数的选择较为鲁棒,能够适应不同的问题和环境。

在实际应用中,粒子群算法已经被成功应用于解决PFSP问题。通过合理选择适应度函数和参数设置,粒子群算法能够找到高质量的调度方案,提高生产效率和降低成本。

总结起来,基于粒子群算法的PFSP算法流程是一个有效的解决方案。它能够通过全局搜索和并行计算,找到最优的调度方案,提高生产效率和降低成本。随着技术的不断发展,粒子群算法在车间调度问题中的应用前景将更加广阔。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据res = xlsread('数据集.xlsx');%%  划分训练集和测试集temp = randperm(357);P_train = res(temp(1: 240), 1: 12)';T_train = res(temp(1: 240), 13)';M = size(P_train, 2);P_test = res(temp(241: end), 1: 12)';T_test = res(temp(241: end), 13)';N = size(P_test, 2);%%  数据归一化[p_train, ps_input] = mapminmax(P_train, 0, 1);p_test  = mapminmax('apply', P_test, ps_input);t_train = ind2vec(T_train);t_test  = ind2vec(T_test );

⛳️ 运行结果

🔗 参考文献

[1] 张其亮,陈永生,韩斌.改进的粒子群算法求解置换流水车间调度问题[J].计算机应用, 2012, 32(4):4.DOI:10.3724/SP.J.1087.2012.01022.

[2] 张源,王加冕.改进粒子群算法求解置换流水车间调度问题[J].软件, 2020, 41(6):5.DOI:10.3969/j.issn.1003-6970.2020.06.023.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值