✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在现代制造业中,车间调度是一个至关重要的问题。它涉及到如何安排和优化生产过程,以最大程度地提高生产效率和降低成本。其中,置换流水车间调度问题(Permutation Flowshop Scheduling Problem,PFSP)是一种经典的车间调度问题,它要求在多个车间中安排多个作业的先后顺序,以最小化完成所有作业所需的时间。
为了解决PFSP问题,许多算法被提出和研究。其中一种常用的算法是粒子群算法(Particle Swarm Optimization,PSO)。粒子群算法是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体的行为。它通过不断地迭代和更新粒子的位置和速度来搜索最优解。
下面将介绍基于粒子群算法求解PFSP问题的算法流程:
-
初始化粒子群:随机生成一群粒子,并为每个粒子分配一个随机的初始位置和速度。
-
计算适应度:根据每个粒子的位置,计算其对应的调度方案的适应度。适应度可以是完成所有作业所需时间的倒数,也可以是其他评价指标。
-
更新全局最优解:在粒子群中,找到当前最优的调度方案,并将其作为全局最优解。
-
更新个体最优解:对于每个粒子,根据其自身历史最优解和当前最优解,更新其个体最优解。
-
更新速度和位置:根据粒子群算法的公式,更新每个粒子的速度和位置。速度的更新考虑了个体最优解和全局最优解的影响。
-
判断终止条件:判断是否满足终止条件,如达到最大迭代次数或找到满意的调度方案。
-
迭代更新:如果未满足终止条件,则回到步骤3,继续迭代更新。
通过以上步骤,粒子群算法不断搜索和优化调度方案,直到找到最优解或满足终止条件。
粒子群算法具有以下优点:
-
全局搜索能力:通过全局最优解的更新,粒子群算法可以在搜索空间中进行全局搜索,找到更优的解决方案。
-
并行计算:粒子群算法的并行计算能力使得它能够处理大规模的车间调度问题,提高求解效率。
-
鲁棒性:粒子群算法对于问题的初始解和参数的选择较为鲁棒,能够适应不同的问题和环境。
在实际应用中,粒子群算法已经被成功应用于解决PFSP问题。通过合理选择适应度函数和参数设置,粒子群算法能够找到高质量的调度方案,提高生产效率和降低成本。
总结起来,基于粒子群算法的PFSP算法流程是一个有效的解决方案。它能够通过全局搜索和并行计算,找到最优的调度方案,提高生产效率和降低成本。随着技术的不断发展,粒子群算法在车间调度问题中的应用前景将更加广阔。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
🔗 参考文献
[1] 张其亮,陈永生,韩斌.改进的粒子群算法求解置换流水车间调度问题[J].计算机应用, 2012, 32(4):4.DOI:10.3724/SP.J.1087.2012.01022.
[2] 张源,王加冕.改进粒子群算法求解置换流水车间调度问题[J].软件, 2020, 41(6):5.DOI:10.3969/j.issn.1003-6970.2020.06.023.