✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 简介
最大重叠离散小波变换(MODWT)是一种小波变换,它与传统的小波变换不同,在分解过程中,小波函数和尺度函数在每个尺度上都以最大重叠的方式进行卷积。这种重叠方式可以使小波变换具有更好的时频局部化特性,从而可以更好地捕捉信号的局部特征。
2. MODWT的数学原理
3. MODWT的重构过程
MODWT 的重构过程可以表示为:
4. MODWT的应用
MODWT 已被广泛应用于信号处理、图像处理、语音处理等领域。在信号处理中,MODWT 可用于信号去噪、信号压缩、信号分类等。在图像处理中,MODWT 可用于图像去噪、图像压缩、图像分割等。在语音处理中,MODWT 可用于语音去噪、语音识别、语音合成等。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
5. MODWT的优缺点
MODWT 的优点包括:
-
时频局部化特性好,可以更好地捕捉信号的局部特征。
-
具有良好的抗噪性能。
-
具有良好的压缩性能。
MODWT 的缺点包括:
-
计算量大。
-
冗余度高。
6. 总结
MODWT 是一种小波变换,它具有良好的时频局部化特性、抗噪性能和压缩性能。MODWT 已被广泛应用于信号处理、图像处理、语音处理等领域。
🔗 参考文献
[1] 廖丽芳,蔡如华.基于MODWT在金融数据预测的应用[J].计算机工程与设计, 2013(04):1346-1350.DOI:10.3969/j.issn.1000-7024.2013.04.040.
[2] 许晓静.基于LLSA小波的高频金融时间序列突变点检测研究[D].天津大学,2014.DOI:10.7666/d.D486748.
[3] 林凯荣,张凡,兰甜,等.基于极大重叠离散小波变换和Elman神经网络的磨刀门咸潮模拟研究[J].人民珠江, 2018, 39(7):5.DOI:10.3969/j.issn.1001-9235.2018.07.001.