【雷达检测】多目标情况下不同毫米波雷达恒虚警率(CA、CMLD、GO、IC、OS、ODGO、OSSO、SO、TM)-CFAR算法性能检测算法的仿真研究matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用             机器学习

🔥 内容介绍

恒虚警率(CFAR)算法是雷达检测中常用的技术,用于在存在杂波和干扰的情况下检测目标。在多目标情况下,不同的CFAR算法具有不同的性能。本文对几种常见的毫米波雷达CFAR算法,包括CA、CMLD、GO、IC、OS、ODGO、OSSO、SO和TM算法,进行了仿真研究,比较了它们的检测性能。

引言

毫米波雷达在汽车、工业和军事等领域有着广泛的应用。在多目标环境中,雷达需要能够检测和跟踪多个目标,同时抑制杂波和干扰。CFAR算法是实现这一目标的关键技术。

CFAR算法

CFAR算法通过自适应调整检测阈值来保持恒定的虚警率,无论杂波和干扰的功率如何。常见的CFAR算法包括:

  • **CA (Cell Averaging):**平均参考单元中的功率,并将其与目标单元的功率进行比较。

  • **CMLD (Cell Mean Level Detector):**计算参考单元的均值和标准差,并使用它们来调整检测阈值。

  • **GO (Greatest of):**选择参考单元中最大的功率作为检测阈值。

  • **IC (Interference Cancellation):**通过自适应滤波器去除干扰,然后使用CA算法进行检测。

  • **OS (Order Statistic):**对参考单元的功率进行排序,并使用特定百分比的功率作为检测阈值。

  • **ODGO (Ordered Difference of Greatest of):**计算参考单元中最大功率的差值,并将其与目标单元的功率进行比较。

  • **OSSO (Ordered Statistic of Square of Ordered):**对参考单元的功率平方进行排序,并使用特定百分比的功率平方作为检测阈值。

  • **SO (Square of):**对参考单元的功率进行平方,然后使用CA算法进行检测。

  • **TM (Trimming Mean):**对参考单元的功率进行排序,并去除最高和最低的百分比,然后使用平均值作为检测阈值。

仿真研究

本研究使用MATLAB对上述CFAR算法进行了仿真。仿真参数如下:

  • 杂波功率:-10 dBm

  • 干扰功率:-5 dBm

  • 目标信噪比:10 dB

  • 参考单元数量:16

  • 目标数量:1-10

📣 部分代码

function [clutter_data] = generate_lgclutter(radar_points, sigmav, muc, sigmac)    fr = 1000;%脉冲重复频率    lambda = 0.05;%波长    sigmaf = 2*sigmav/lambda;%多普勒频移    %生成高斯随机分布序列同相正交分量    rand('state',sum(100*clock));%产生服从 0-1的均匀分布随机序列    d1 = rand(1,radar_points);    rand('state',7*sum(100*clock)+1);    d2 = rand(1,radar_points);    xi = 2*sqrt(-2*log(d1)).*cos(2*pi*d2);    %滤波器设计:傅里叶级数展开    coe_num = 12;    for n = 0:coe_num        coeff(n+1) = 2*sigmaf*sqrt(pi)*exp(-4*sigmaf^2*pi^2*n^2/fr^2)/fr;    end    for n = 1:2*coe_num+1        if n <= coe_num+1            b(n) = 1/2*coeff(coe_num+2-n);        else            b(n) = 1/2*coeff(n-coe_num);        end    end    %生成高斯谱杂波    xxi = conv(b,xi);    xxi = xxi(coe_num*2+1:radar_points+coe_num*2);    xsigmac = std(xxi);    xmuc = mean(xxi);    yyi = (xxi-xmuc)/xsigmac;%标准归一化0-1高斯    %变换生成对数正态分布数据    yyi = sigmac*yyi+log(muc);    clutter_data = exp(yyi);%生成对数正态分布的杂波序列end

⛳️ 运行结果

结果

仿真结果表明,在多目标情况下,不同的CFAR算法具有不同的检测性能。

  • CA算法在目标数量较少时表现最佳,但随着目标数量的增加,其检测性能下降。

  • CMLD算法在目标数量较多时表现最佳,其检测性能相对稳定。

  • GO算法和IC算法的检测性能与目标数量无关,但GO算法的虚警率较高。

  • OS算法和ODGO算法的检测性能与目标数量相关,在目标数量较多时表现较好。

  • OSSO算法和SO算法的检测性能与目标数量无关,但其虚警率较高。

  • TM算法的检测性能与目标数量相关,在目标数量较少时表现较好。

结论

在多目标情况下,不同的毫米波雷达CFAR算法具有不同的检测性能。CMLD算法在目标数量较多时表现最佳,而CA算法在目标数量较少时表现最佳。选择合适的CFAR算法对于提高雷达的检测性能至关重要。

🔗 参考文献

[1] 孙宾宾,沈涛,李洪鹏,等.基于LFMCW雷达多目标检测的CA-CFAR改进算法[J].激光与光电子学进展, 2021.DOI:10.3788/LOP202158.0815005.

[2] 马江彦.非均匀杂波环境下恒虚警的研究[D].大连海事大学[2024-02-29].DOI:10.7666/d.y2088601.

[3] 张楠.区域安防毫米波雷达信号处理算法研究[D].西安电子科技大学,2019.

[4] 何广顺,夏京祥.多目标情况下的CFAR检测[J].火控雷达技术, 1990(2):18.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

本文以车载防撞雷达研究背景,针对毫米波雷达目标检测和参数估计算法中的一些关键技术展开研究,并设计了一种低复杂度的毫米波车载雷达信号处理模块,应用于24GHz汽车前防撞雷达系统。首先,阐述了毫米波雷达研究背景及意义,介绍国内外研究现状,主要包括产品级研究进展和毫米波雷达关键技术研究进展,对不同体制连续波雷达测距测速原理进行了详细推导,为后续研究仿真提供了理论基础。其次,研究了毫米波线性调频连续波(Linear Frequency Modulated Continuous Wave,LFMCW)雷达中的多目标配对和速度解模糊算法。首先,针对现有变周期三角波LFMCW雷达利用容差函数进行多目标配对方法在目标数较多时算法复杂度较高的缺点,提出一种利用先验信息压缩频率配对空间的多步配对算法,降低配对复杂度。然后,针对现有锯齿波LFMCW雷达多重脉冲重复频率(Pulse Recurrence Frequency,PRF)解速度模糊算法复杂度高、鲁棒性差等缺点,提出一种改进算法,该算法根据模糊速度计算可能的速度值,得到对应的慢时间维离散傅里叶变换(Discrete Fourier Transform,DFT)因子及其频谱幅度值,最大频谱幅度值对应的速度值即为不模糊速度,极大降低了解模糊算法复杂度。然后,研究恒虚警概率(Constant False Alarm Rate,CFAR)检测算法。在分析恒虚警概率检测目标遮蔽和自遮蔽效应形成原因的基础上,提出了一种能够自适应改变噪声电平估计样本的改进CFAR算法,该算法CFAR检测过程中加入一个反馈操作,当某一频谱单元存在目标时,用估计得到的噪声功率电平代替该频谱单元值,减小对后续频谱单元噪声功率电平估计的影响,从而减小目标遮蔽与自遮蔽效应。针对二维CFAR算法,根据雷达速度计算不同距离单元的静止杂波所处的速度单元,将二维平面划分为噪声区与杂波区,对不同区域采用不同CFAR准则进行检测,在保证虚警概率的前提下提高目标检测概率。最后,针对变周期三角波车载防撞雷达帧结构层次不清,实用性差的问题,提出一种多层次、低复杂度的帧结构及其设计方法,以采样间隔为最小时间单位更有利于系统同步,采用固定长度的子时隙和时隙时间使帧结构更加简单,降低硬件实现成本。利用现有系统硬件结构进行虚拟阵列的设计,通过调整发射天线间距并采用时间分集方式形成具有更大孔径的虚拟接收阵列,获得更高的波束成形增益。在此基础上,设计一种低复杂度的信号处理模块,该模块由信号预处理、波束成形、CFAR检测和多目标配对等子模块组成,并在ADSP-BF707平台上进行实现,应用于24GHz汽车前防撞雷达系统。实测结果显示,该模块算法能够实现目标检测与参数估计功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值