【极点配置】基于龙格库塔法求解极点配置问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

极点配置问题是控制理论中一个重要的问题,其目的是求解一组给定极点的控制系统状态方程。本文提出了一种基于龙格库塔法的极点配置方法,该方法具有较高的精度和效率。

引言

极点配置问题在控制系统设计中至关重要,它可以保证系统具有期望的动态特性。传统上,极点配置问题可以通过代数方法或数值方法求解。代数方法通常适用于低阶系统,而数值方法则适用于高阶系统。

龙格库塔法

龙格库塔法是一种显式数值积分方法,用于求解常微分方程。该方法具有较高的精度和效率,广泛应用于各种科学计算领域。

基于龙格库塔法的极点配置

基于龙格库塔法的极点配置方法将极点配置问题转化为常微分方程组求解问题。具体步骤如下:

  1. 构建状态方程:对于给定的极点集合,构建如下状态方程组:

 

dx/dt = Ax + Bu

其中,A 是系统矩阵,B 是控制矩阵,u 是控制输入。

  1. 离散化:使用龙格库塔法将状态方程组离散化为如下形式:

 

x(k+1) = x(k) + h * f(x(k), u(k))

其中,h 是步长,f(x, u) 是状态方程组的右端函数。

  1. 控制输入设计:设计控制输入u(k),使得状态x(k)收敛到期望的极点。

算法实现

基于龙格库塔法的极点配置算法可以如下实现:

 

输入:极点集合
输出:系统矩阵A、控制矩阵B、控制输入u

1. 构建状态方程组
2. 离散化状态方程组
3. 初始化状态x(0)
4. 循环求解:
a. 计算控制输入u(k)
b. 更新状态x(k+1)
5. 输出A、B、u

仿真结果

为了验证该方法的有效性,我们对一个三阶系统进行了仿真。期望的极点集合为{-1, -2, -3}。仿真结果表明,该方法能够准确地配置极点,且收敛速度较快。

结论

本文提出了一种基于龙格库塔法的极点配置方法,该方法具有较高的精度和效率。该方法可以有效地求解高阶系统的极点配置问题,为控制系统设计提供了有力的工具。

📣 部分代码

clc;clear;A=[-2 -2.5 -0.5; 1 0 0; 0 1 0;];B=[1;0;0];C=[0 1.5 1];D=0;%输入状态空间GG=ss(A,B,C,D);%系统脉冲响应和阶跃响应impulse(G);figure;step(G);%初始状态下的响应figure;t=0:0.1:20;x0=[1;0;2];[y0,t,x0]=initial(G,x0,t);plot(t,x0,':',t,y0,'-');%输入作用下的响应figure;u=(t>=0&t<=2)*2+(t>2)*0.5;[yu,t,xu]=lsim(G,u,t);plot(t,xu,':',t,yu,'-');%总响应figure;y=y0+yu;x=x0+xu;plot(t,x,':',t,y,'-')

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值