机器学习在相沉积分类附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文应用机器学习中的人工神经网络(ANN)方法实现相沉积分类过程的自动化。ANN 接收一个数据集,其中包含堪萨斯州休戈顿和帕诺马油田的七口井的数据,包括测井和九种已识别的相沉积数据。这些信息作为输入提供给 ANN,以创建一个模型来预测相沉积类别,模拟实际的相沉积分类研究。首先,使用七口井中的六口井构建模型,使用监督训练过程,而剩余的一口井用作测试井来评估模型性能。随后,更改数据集以均衡不平衡的相沉积类别样本,试图提高模型性能。最后,通过应用样本复杂度研究,探索了数据集大小对网络性能的影响。取得的结果证实,ANN 是相沉积分类中的一个可靠工具,但它也带来了所有机器学习技术的主要缺点,即由于缺乏技术信息,开发的模型极易出错。

引言

相沉积分类是地质学中一项重要的任务,它涉及确定岩石中沉积环境的类型。传统上,相沉积分类是通过对岩芯和测井数据的目视解释来完成的,这既耗时又主观。机器学习技术为自动化相沉积分类过程提供了新的可能性,从而提高了效率和客观性。

人工神经网络(ANN)

ANN 是一种机器学习算法,它模仿人脑中神经元的行为。ANN 由称为神经元的互连层组成,每个神经元接收输入,应用激活函数,并产生输出。通过训练 ANN 来学习从输入数据中提取特征,它可以执行各种任务,包括分类和回归。

数据集

本文使用的数据集包含堪萨斯州休戈顿和帕诺马油田的七口井的数据。数据集包括测井数据(伽马射线、中子孔隙度和声波时差)和九种已识别的相沉积类别。

方法

ANN 模型使用监督训练过程构建。六口井的数据用作训练数据,而剩余的一口井用作测试数据。ANN 模型使用反向传播算法进行训练,以最小化训练数据上的损失函数。

为了提高模型性能,数据集被更改为均衡不平衡的相沉积类别样本。还进行了样本复杂度研究,以探索数据集大小对网络性能的影响。

结果

ANN 模型在测试数据上的准确率为 85%。均衡数据集后,准确率提高到 90%。样本复杂度研究表明,随着数据集大小的增加,模型的准确率逐渐提高。

讨论

结果证实,ANN 是相沉积分类中的一个可靠工具。ANN 模型能够从测井数据中学习特征,并准确地预测相沉积类别。均衡数据集和增加数据集大小可以进一步提高模型性能。

然而,ANN 模型也存在一些缺点。由于缺乏技术信息,开发的模型极易出错。此外,ANN 模型是黑箱模型,难以解释其决策过程。

结论

ANN 是自动化相沉积分类过程的有前途的技术。ANN 模型能够从测井数据中学习特征,并准确地预测相沉积类别。然而,ANN 模型也存在一些缺点,需要进一步的研究来解决这些缺点。

📣 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COMPLETE BRUTE FORCE CODE%DATA_DIVIDED_NOF9_NOFEATURES.mat is needed%% set global variablesglobal AccuracyM1_tot; global AccuracyM1_test; global AccuracyM2_tot; global AccuracyM2_test; global AccuracyM3_test; global AccuracyM3_tot;global F1M1avg; global F1M2avg; global F1M3avg;global Ystore; global YINDstore; global ETest;global STOREy; global STOREtr;global F1M1avg_tot; global F1M2avg_tot; global F1M3avg_tot;%resetAccuracyM1_tot ={}; AccuracyM1_test={}; AccuracyM2_tot={}; AccuracyM2_test={}; AccuracyM3_test={}; AccuracyM3_tot={};F1M1avg={}; F1M2avg={}; F1M3avg={};Ystore={}; YINDstore={}; ETest = [];STOREy={}; STOREtr={};F1M1avg_tot={}; F1M2avg_tot={}; F1M3avg_tot={};%% SET UP INPUT AND TARGET AND RESET ARRAYx = input_data;t = target_data;%defining rangesrangeHidden = [1,2,4,8,16,32,64,128]; %NUMBEER OF NEURONS FOR EACH LAYERrangeLayers = 2:3; % 2 or 3 hidden layersrangeVote = 1:10; %only 2 votes%figuresF1=figure; F12=figure; Accuracy1=figure; Accuracy2=figure; RoCurve1=figure; RoCurve2=figure;%% START LOOPfor w = 1:length(WELLS_data)    for layers = rangeLayers        for hidden = rangeHidden            for vote = rangeVote                [net] = ArchitectureSetUp(layers,hidden,x,t);                [net] = DivideindNOVaL(net,w,x,t,WELLS_data);%                 [net] = Divideind(net,w,x,t,WELLS_data);                [net] = TrainingFunctionSetUp(net);                [net,tr] = train(net,x,t); %training                 [Ystore,YINDstore,y,tind,yind,ETest] = Test(net,x,t,Ystore,YINDstore,vote,tr,ETest); %test            end            %voting results            [y,yind,STOREy,STOREtr,Ystore,YINDstore] = Vote(Ystore,YINDstore,tind,STOREy,STOREtr,tr,w,layers,hidden);%           [y,yind,STOREy,STOREtr,Ystore,YINDstore,ETest] = VoteTheBest(ETest,Ystore,YINDstore,STOREy,STOREtr,tr,w,layers,hidden);            % Calculate Accuracy and F1            [AccuracyM1_test,AccuracyM1_tot] = Accuracy_M1(AccuracyM1_test,AccuracyM1_tot,tind,yind,hidden,tr,w,layers);            [AccuracyM2_test,AccuracyM2_tot] = Accuracy_M2(AccuracyM2_test,AccuracyM2_tot,tind,yind,hidden,tr,w,layers);            [AccuracyM3_test,AccuracyM3_tot] = Accuracy_M3(AccuracyM3_test,AccuracyM3_tot,tind,yind,hidden,tr,w,layers);                        [F1M1avg,F1M1,precision_M1,recall_M1] = F1_M1(F1M1avg,facies,w,tr,yind,tind,layers,hidden);            [F1M2avg,F1M2,precision_M2,recall_M2] = F1_M2(F1M2avg,facies,w,tr,yind,tind,layers,hidden);            [F1M3avg,precision_M3,recall_M3] = F1_M3(F1M3avg,w,tr,yind,tind,layers,hidden);                        [F1M1avg_tot,F1M1_tot,precision_M1_tot,recall_M1_tot] = F1_M1_tot(F1M1avg_tot,facies,w,tr,yind,tind,layers,hidden);            [F1M2avg_tot,F1M2_tot,precision_M2_tot,recall_M2_tot] = F1_M2_tot(F1M2avg_tot,facies,w,tr,yind,tind,layers,hidden);            [F1M3avg_tot,precision_M3_tot,recall_M3_tot] = F1_M3_tot(F1M3avg_tot,w,tr,yind,tind,layers,hidden);        end        ROC(RoCurve1,RoCurve2,w,t,tr,y,layers); %needs to be here cause tr is calculated and overwritten        Plotting(rangeHidden,w,layers,F1M1avg,F1M2avg,F1M3avg,AccuracyM1_test,AccuracyM2_test,AccuracyM3_test,F1,F12,Accuracy1,Accuracy2);    endend%find best architectureBests(rangeHidden,rangeLayers,F1M1avg,F1M2avg,F1M3avg,AccuracyM1_test,AccuracyM2_test,AccuracyM3_test)save FINAL_128_10tries_AVGvote.mat%% FUNCTIONSfunction [net] = ArchitectureSetUp(layers,hidden,x,t)numInputs = 1; numLayers = layers;biasConnect = ones(layers,1); inputConnect = [1 ;zeros(layers-1,1)]; outputConnect = [zeros(1,layers-1) 1]; layerConnect = zeros(layers);for i = 2:layers    layerConnect(i,i-1) = 1;end net = network(numInputs,numLayers,biasConnect,inputConnect,layerConnect,outputConnect);%start to configure the networknet = configure(net,x,t);%set up the layers namefor i = 1:layers    if i == 1        net.layers{i,1}.name = 'input layer';    elseif i == layers        net.layers{i,1}.name = 'output layer';    else         net.layers{i,1}.name = "hidden layer" + i ;    end end %set up the layer dimensionsfor i = 1:layers    if i == layers        net.layers{i,1}.dimensions = 9;    else         net.layers{i,1}.dimensions = hidden;    end end%set up the layer transfer functionfor i = 1:layers    if i == layers         net.layers{i,1}.transferFcn = "softmax";    else         net.layers{i,1}.transferFcn = "tansig";    end end  %set up the net input function and   %set up the W and b initialization function algorithm for i = 1:layers    net.layers{i,1}.netInputFcn = "netsum";    net.layers{i,1}.initFcn= "initnw";end % SET UP DATA PRE-PROCESSING FUNCTIONSnet.input.processFcns = {'removeconstantrows','mapminmax'};% set up performance functionnet.performFcn = 'crossentropy';  % Cross-Entropyendfunction [net] = DivideindNOVaL(net,w,x,t,WELLS_data)%% ORDER DATAtraining_data = [];  training_index = [];training_find = [];for i = 1:length(WELLS_data)    if i == w        training_index = [training_index zeros(1,length(WELLS_data{2,i}))];        continue    end    training_data =[training_data  x(:,WELLS_data{2,i})];    training_index = [training_index ones(1,length(WELLS_data{2,i}))];     training_find = find(training_index);endtest_well_data = x(:,WELLS_data{2,w});test_well_index = training_index <1;test_well_find = find (test_well_index);%test well indextestIndex = test_well_index;%train wells indicestrainIndex = testIndex <1 ;%%net.divideFcn = 'divideind'; % Divide up for indexnet.divideMode = 'sample';  % Divide up every sample[trainInd,testInd]=divideind(length(t),find(trainIndex), find(testIndex));net.divideParam.trainInd=trainInd;net.divideParam.testInd=testInd;endfunction [net] = Divideind(net,w,x,t,WELLS_data)%% ORDER DATAtraining_data = [];  training_index = [];training_find = [];for i = 1:length(WELLS_data)    if i == w        training_index = [training_index zeros(1,length(WELLS_data{2,i}))];        continue    end    training_data =[training_data  x(:,WELLS_data{2,i})];    training_index = [training_index ones(1,length(WELLS_data{2,i}))];     training_find = find(training_index);end

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
  • 29
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值