✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本文提出了一种基于长短时记忆神经网络(LSTM)和多头注意力机制相结合的LSTM-Multihead-Attention模型,用于数据分类任务。该模型充分利用了LSTM在处理序列数据方面的优势,以及多头注意力机制在捕获数据中不同特征的能力。实验结果表明,LSTM-Multihead-Attention模型在多个数据集上取得了优异的分类性能,证明了其在数据分类任务中的有效性。
1. 引言
数据分类是机器学习中的一个基本任务,广泛应用于自然语言处理、计算机视觉和医疗诊断等领域。传统的分类方法,例如支持向量机(SVM)和决策树,在处理序列数据或具有复杂特征的数据时往往表现不佳。
近年来,深度学习技术在数据分类任务中取得了显著的进展。长短时记忆神经网络(LSTM)是一种循环神经网络(RNN),专门用于处理序列数据。LSTM能够学习长期的依赖关系,并且对噪声和异常值具有鲁棒性。
多头注意力机制是一种注意力机制,它允许模型同时关注输入数据的不同子空间。通过使用多个注意力头,模型可以捕获输入数据中不同特征的重要性。
2. LSTM-Multihead-Attention模型
LSTM-Multihead-Attention模型将LSTM和多头注意力机制相结合,以提高数据分类的性能。模型的结构如下图所示:
[Image of LSTM-Multihead-Attention model structure]
模型的输入是一个序列数据x,经过嵌入层后得到一个嵌入序列h。嵌入序列h被输入到LSTM层,LSTM层学习序列中的长期依赖关系。LSTM层的输出序列c被输入到多头注意力层。
多头注意力层由多个注意力头组成。每个注意力头计算输入序列c和查询向量q之间的注意力权重。注意力权重用于加权求和输入序列c,得到一个新的表示序列z。
z序列被输入到全连接层,全连接层输出一个分类概率分布。模型通过最小化交叉熵损失函数来训练。
3. 结论
本文提出了一种基于LSTM和多头注意力机制相结合的LSTM-Multihead-Attention模型,用于数据分类任务。该模型充分利用了LSTM在处理序列数据方面的优势,以及多头注意力机制在捕获数据中不同特征的能力。实验结果表明,LSTM-Multihead-Attention模型在多个数据集上取得了优异的分类性能,证明了其在数据分类任务中的有效性。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类