✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着电力系统规模的不断扩大和负荷的快速增长,电压控制问题日益突出。传统的集中式电压控制方法难以应对大规模电力系统中复杂的电压波动和控制需求。为了提高电压控制的效率和可靠性,近年来,分布式电压控制技术得到了广泛的研究和应用。其中,基于集群划分的电压控制方法是一种有效的策略,它将电力系统划分为多个独立的集群,每个集群内部进行独立的电压控制,从而提高系统的整体控制效率。
KMeans聚类算法
KMeans算法是一种常用的无监督学习算法,它将数据点划分为K个不同的簇,每个簇由一个簇中心表示。算法的基本思想是:
-
**初始化簇中心:**随机选择K个数据点作为初始簇中心。
-
**分配数据点:**将每个数据点分配到距离其最近的簇中心所在的簇。
-
**更新簇中心:**重新计算每个簇中所有数据点的平均值,并将平均值作为新的簇中心。
-
**重复步骤2和3:**直到簇中心不再发生显著变化,或者达到最大迭代次数。
基于KMeans的IEEE33节点电压调节的集群划分
本博客将介绍如何利用KMeans算法对IEEE33节点系统进行集群划分,并进行电压调节。
1. 数据准备
首先,需要收集IEEE33节点系统的节点电压数据,并将其作为KMeans算法的输入。
2. 特征选择
选择合适的特征来描述节点之间的相似性,例如:
-
节点电压值
-
节点之间的距离
-
节点之间的线路阻抗
3. 确定簇数
可以使用一些常用的方法来确定最佳的簇数K,例如:
-
**肘部法则:**绘制不同簇数下的误差平方和(SSE)曲线,寻找曲线的拐点,该拐点对应的簇数即为最佳的簇数。
-
**轮廓系数:**计算每个数据点与其所在簇的相似度以及与其他簇的相似度,并计算平均轮廓系数,选择轮廓系数最大的簇数。
4. 训练KMeans模型
使用准备好的数据和选择的特征,训练KMeans模型,得到每个节点所属的簇。
5. 电压调节
将每个簇作为独立的控制区域,并根据每个簇的电压水平进行独立的电压调节。例如:
-
对于电压偏高的簇,可以采取降低电压的方式,例如增加线路阻抗或降低发电机出力。
-
对于电压偏低的簇,可以采取提高电压的方式,例如降低线路阻抗或增加发电机出力。
6. 评估效果
通过仿真或实际测试,评估集群划分和电压调节的效果,例如:
-
评估电压偏差和电压波动情况
-
评估控制效率和可靠性
结论
基于KMeans的集群划分方法可以有效地将电力系统划分为多个独立的控制区域,并进行独立的电压调节,从而提高电压控制的效率和可靠性。该方法可以应用于各种电力系统,例如配电系统、输电系统等。
⛳️ 运行结果
🔗 参考文献
[1] 严玉廷.基于集群划分的含分散风电配电网电压调节策略[J].云南电力技术, 2023, 51(3):73-80.
[2] 张倩,丁津津,王群京,等.基于集群划分的高渗透率分布式能源系统智能调压方法.CN201711403797.X[2024-05-19].
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类