【通信】基于核回归的 OFDM 系统信道估计附matlab复现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

正交频分复用 (OFDM) 是一种广泛应用于现代无线通信系统的多载波调制技术。在 OFDM 系统中,信道估计是至关重要的一步,因为它允许接收机补偿信道引起的失真,从而实现可靠的数据传输。传统的信道估计方法通常依赖于导频符号,这些导频符号会占用宝贵的带宽资源。为了解决这个问题,近年来基于机器学习的信道估计方法引起了广泛关注。

核回归

核回归是一种非参数回归方法,它可以用来估计随机变量之间的关系。核回归的基本思想是使用一个核函数来加权样本点,以预测目标变量的值。与线性回归不同,核回归不假设目标变量与输入变量之间存在线性关系。

核回归在 OFDM 信道估计中的应用

在 OFDM 系统中,信道可以被建模为一个时变频率选择性信道。信道状态信息 (CSI) 可以用一个复数矩阵来表示,该矩阵的每个元素对应于一个子载波的信道增益。为了估计 CSI,我们可以使用核回归方法,将接收到的 OFDM 符号作为输入,将 CSI 作为输出。

核回归信道估计的步骤

  1. 数据收集: 收集一定数量的训练数据,包括已知信道状态信息和相应的接收信号。

  2. 核函数选择: 选择合适的核函数。常用的核函数包括高斯核、拉普拉斯核和矩形核。

  3. 带宽参数选择: 选择核函数的带宽参数。带宽参数控制了核函数的平滑程度,影响着模型的泛化能力。

  4. 模型训练: 使用训练数据训练核回归模型。

  5. 信道估计: 使用训练好的核回归模型对接收到的 OFDM 符号进行信道估计。

性能评估

核回归信道估计方法的性能可以通过以下指标进行评估:

  • 均方误差 (MSE): 衡量信道估计的准确性。

  • 符号误码率 (SER): 衡量数据传输的可靠性。

  • 计算复杂度: 衡量算法的效率。

与其他方法的比较

与传统的信道估计方法相比,核回归方法具有以下优势:

  • 不需要导频符号: 可以提高频谱效率。

  • 自适应性强: 可以适应不同的信道条件。

  • 易于实现: 可以使用现有的机器学习库进行实现。

结论

基于核回归的 OFDM 系统信道估计方法是一种有效的方法,可以提高频谱效率和系统性能。然而,核回归方法也存在一些局限性,例如计算复杂度较高,需要大量的训练数据。未来,研究者需要进一步探索改进核回归方法,以使其更加适用于实际的无线通信系统。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

  • 20
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是基于LS和MMSE算法实现OFDM系统信道估计MATLAB代码: ```matlab % OFDM信道估计 % 基于LS和MMSE算法 clc; clear all; close all; %% 定义系统参数 N = 64; % FFT大小 cp_len = 16; % 循环前缀长度 fs = 16000; % 采样率 Ts = 1/fs; % 采样时间 fc = 2000; % 载波频率 T = 1/fc; % 周期 fd = 100; % 多径延迟 K = 10; % 多径个数 SNR_dB = 30; % 信噪比 SNR = 10^(SNR_dB/10); % 信噪比(线性值) P = 1; % 发送功率 L = 10^4; % 发送数据长度 alpha = randn(1,K); % 多径衰落系数 tau = (0:K-1)*T; % 多径时延 h = zeros(1,N+K-1); % 多径信道冲激响应 %% 生成发送数据 x = randi([0,1],1,N*L); % 生成随机发送数据 X = reshape(x,N,L).'; % 分组 X_QPSK = 1/sqrt(2)*(2*X(:,1:2:end)-1+1i*(2*X(:,2:2:end)-1)); % QPSK调制 %% 信道模型 for k = 1:K h(k) = alpha(k)*exp(1i*2*pi*fc*tau(k)); % 多径信道冲激响应 end H = fft(h,N); % 多径信道频率响应 %% 发送和接收 y = zeros(L,N); % 接收信号 for l = 1:L % 发送信号加循环前缀 x_cp = [X_QPSK(l,N-cp_len+1:N),X_QPSK(l,:)]; % 通过多径信道 y_cp = conv(x_cp,h); % 加噪声 sigma2 = P/SNR/N; % 噪声方差 noise = sqrt(sigma2/2)*(randn(1,N+K-1)+1i*randn(1,N+K-1)); % 高斯白噪声 y_n = y_cp+noise; % 接收信号 % 去掉循环前缀并进行FFT y_fft = fft(y_n(K+1:N+K),N); y(l,:) = y_fft; end %% 信道估计 H_LS = zeros(L,N); % LS估计的多径信道频率响应 H_MMSE = zeros(L,N); % MMSE估计的多径信道频率响应 for l = 1:L % 发送信号加循环前缀 x_cp = [X_QPSK(l,N-cp_len+1:N),X_QPSK(l,:)]; % 通过多径信道 y_cp = conv(x_cp,h); % 加噪声 sigma2 = P/SNR/N; % 噪声方差 noise = sqrt(sigma2/2)*(randn(1,N+K-1)+1i*randn(1,N+K-1)); % 高斯白噪声 y_n = y_cp+noise; % 接收信号 % 去掉循环前缀并进行FFT y_fft = fft(y_n(K+1:N+K),N); % LS算法 H_LS(l,:) = y_fft./X_QPSK(l,:); % MMSE算法 H_MMSE(l,:) = conj(H)./(abs(H).^2+sigma2/P).*y_fft./X_QPSK(l,:); end %% 画图 % 信道频率响应 figure; subplot(2,1,1); plot((0:N-1)/N*fs/1000,20*log10(abs(H))); xlabel('频率/kHz'); ylabel('幅度/dB'); title('多径信道频率响应'); subplot(2,1,2); plot((0:N-1)/N*fs/1000,angle(H)/pi*180); xlabel('频率/kHz'); ylabel('相位/度'); title('多径信道频率响应'); % LS估计的信道频率响应 figure; subplot(2,1,1); plot((0:N-1)/N*fs/1000,20*log10(abs(H_LS))); xlabel('频率/kHz'); ylabel('幅度/dB'); title('LS估计的多径信道频率响应'); subplot(2,1,2); plot((0:N-1)/N*fs/1000,angle(H_LS)/pi*180); xlabel('频率/kHz'); ylabel('相位/度'); title('LS估计的多径信道频率响应'); % MMSE估计的信道频率响应 figure; subplot(2,1,1); plot((0:N-1)/N*fs/1000,20*log10(abs(H_MMSE))); xlabel('频率/kHz'); ylabel('幅度/dB'); title('MMSE估计的多径信道频率响应'); subplot(2,1,2); plot((0:N-1)/N*fs/1000,angle(H_MMSE)/pi*180); xlabel('频率/kHz'); ylabel('相位/度'); title('MMSE估计的多径信道频率响应'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值