Matlab实现NGO-TCN-BiGRU-Attention北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制多变量时间序列预测

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

光伏发电作为一种清洁能源,其发电量预测对于电网安全稳定运行至关重要。近年来,时间序列预测模型在光伏发电量预测方面取得了显著成果。本文提出了一种基于北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制的模型(NGO-TCN-BiGRU-Attention),用于提高光伏多变量时间序列预测的精度和稳定性。该模型利用时间卷积网络(TCN)提取时间序列中的长程依赖关系,并结合双向门控循环单元(BiGRU)捕捉时间序列中的双向信息。同时,引入注意力机制,进一步增强模型对重要特征的关注度。为了优化模型参数,本文采用北方苍鹰算法进行全局寻优,提高模型的泛化能力和预测精度。通过对真实光伏发电数据进行实验,结果表明NGO-TCN-BiGRU-Attention模型在预测精度和稳定性方面均优于其他对比模型,验证了该模型的有效性和可行性。

关键词: 光伏发电,时间序列预测,时间卷积网络,双向门控循环单元,注意力机制,北方苍鹰算法

1. 概述

随着全球能源需求的增长和环境保护意识的提高,光伏发电作为一种清洁、可再生能源,得到了广泛的应用和发展。光伏发电量预测是电网调度和运行的关键环节,准确预测光伏发电量对于提高电网的安全性、稳定性和经济性具有重要意义。然而,光伏发电量受天气、地理环境、季节等因素的影响,具有明显的非线性、非平稳性和多变量特性,这给光伏发电量预测带来了挑战。

近年来,随着深度学习技术的快速发展,基于深度学习模型的光伏发电量预测方法得到了广泛研究。其中,循环神经网络(RNN)、卷积神经网络(CNN)和长短期记忆网络(LSTM)等模型在时间序列预测方面取得了显著成果。然而,传统模型在处理时间序列中的长程依赖关系和多变量信息方面存在不足,导致预测精度和稳定性受到限制。

为了解决上述问题,本文提出了一种基于北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制的模型(NGO-TCN-BiGRU-Attention),用于提高光伏多变量时间序列预测的精度和稳定性。该模型利用时间卷积网络(TCN)提取时间序列中的长程依赖关系,并结合双向门控循环单元(BiGRU)捕捉时间序列中的双向信息。同时,引入注意力机制,进一步增强模型对重要特征的关注度。为了优化模型参数,本文采用北方苍鹰算法进行全局寻优,提高模型的泛化能力和预测精度。

2. 模型结构

NGO-TCN-BiGRU-Attention模型的结构如图1所示,主要包含以下几个模块:

2.1 时间卷积网络(TCN)

TCN是一种专门用于处理时间序列数据的卷积神经网络,通过堆叠多个膨胀卷积层,有效地提取时间序列中的长程依赖关系。膨胀卷积可以将卷积核的感受野扩大,从而捕捉到更长的时间范围内的特征信息。

2.2 双向门控循环单元(BiGRU)

BiGRU是一种改进的门控循环单元(GRU),它在GRU的基础上增加了反向传播机制,可以同时捕捉时间序列中的向前和向后信息,从而更全面地理解时间序列的动态变化。

2.3 注意力机制

注意力机制可以根据输入数据的不同重要性分配不同的权重,增强模型对重要特征的关注度。在本文模型中,注意力机制应用于BiGRU的输出,帮助模型更好地理解时间序列中的关键信息。

2.4 北方苍鹰算法优化

北方苍鹰算法是一种新型的元启发式优化算法,其灵感来源于北方苍鹰的狩猎行为。该算法具有全局寻优能力强、收敛速度快等优点,适合于优化模型参数。

3. 模型训练

NGO-TCN-BiGRU-Attention模型的训练过程如下:

  1. 数据预处理: 对光伏发电数据进行预处理,包括数据清洗、归一化等操作。

  2. 模型初始化: 随机初始化模型参数。

  3. 模型训练: 使用优化算法(北方苍鹰算法)训练模型参数,最小化预测误差。

  4. 模型评估: 使用测试数据集评估模型的预测性能,计算预测误差和相关指标。

4. 结论

本文提出了一种基于北方苍鹰算法优化时间卷积双向门控循环单元融合注意力机制的模型(NGO-TCN-BiGRU-Attention),用于提高光伏多变量时间序列预测的精度和稳定性。该模型通过整合时间卷积网络、双向门控循环单元和注意力机制,有效地提取了时间序列中的长程依赖关系、双向信息和重要特征,并利用北方苍鹰算法进行全局寻优,提高了模型的泛化能力和预测精度。实验结果表明,NGO-TCN-BiGRU-Attention模型在预测精度和稳定性方面均优于其他对比模型,验证了该模型的有效性和可行性。

⛳️ 运行结果

🔗 参考文献

[1] 林靖皓,秦亮曦,苏永秀,等.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.

[2] 冯凤江,杨增刊.基于图卷积和注意力机制的高速公路交通流预测[J].公路交通科技, 2023, 40(9):215-223.DOI:10.3969/j.issn.1002-0268.2023.09.025.

[3] 桑海峰,陈紫珍.基于双向门控循环单元的3D人体运动预测[J].电子与信息学报, 2019, 41(9):8.DOI:10.11999/JEIT180978.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化
、NLOS识别

  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
将多尺度卷积(MSC)、时序卷积网络(TCN)和多头注意力机制(Multi-Head Attention)结合用于时间序列预测可以带来一些优势: 1. 捕捉多尺度特征:多尺度卷积可以在不同尺度上感知时间序列数据的特征,而TCN可以处理长期依赖性。多头注意力机制可以在不同的注意力头上关注不同的特征子空间。通过结合这三个方法,可以充分利用它们各自的优势,更全面地捕捉时间序列数据中的多尺度特征。 2. 强化时间依赖建模:TCN和多头注意力机制在建模时间序列数据的时间依赖关系方面具有优势。TCN通过使用卷积操作来捕捉长期依赖性,避免了传统循环神经网络中的梯度消失或梯度爆炸问题。多头注意力机制可以通过自注意力机制在序列中建模长距离的依赖关系。将它们与多尺度卷积结合,可以更好地处理时间序列数据中的时间依赖性,并提高模型的预测性能。 3. 增强特征表达能力:多头注意力机制能够对输入序列的不同位置进行自适应加权,从而更好地聚焦于重要的时间步。通过多头注意力机制,模型可以同时关注多个特征子空间,提高特征表达的丰富性。结合多尺度卷积TCN,可以从多个角度和尺度提取特征,并通过多头注意力机制加权融合这些特征,进一步提升特征表达能力。 4. 提高模型的泛化能力:通过结合多个不同的模型组件,如MSC、TCN和多头注意力机制,可以使模型具有更大的灵活性和泛化能力。这种组合能够同时考虑时间序列数据的多个方面,并充分利用它们之间的相互作用。这有助于模型更好地适应不同类型、长度和复杂性的时间序列数据,提高预测性能。 综上所述,将多尺度卷积TCN和多头注意力机制结合应用于时间序列预测任务,可以充分利用它们各自的优势,增强时间序列数据的特征表达能力、时间依赖建模能力和泛化能力,从而提高预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值