✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,
代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
在时序数据预测领域,双向门控循环单元(BiGRU)结合注意力机制已经成为一种非常有效的算法。本文将对基于BiGRU-Attention的数据单输入单输出预测算法进行深入研究,并探讨其在时序预测中的应用。
首先,让我们来了解一下BiGRU-Attention算法的原理。BiGRU是一种循环神经网络(RNN)的变种,它具有双向的结构,可以更好地捕捉时序数据中的长期依赖关系。而注意力机制则可以帮助模型更加关注输入数据中的重要部分,从而提高预测的准确性。将这两种算法结合起来,可以得到一种强大的时序预测模型,能够在各种领域取得良好的效果。
在实际应用中,我们可以将BiGRU-Attention算法应用于各种时序数据的预测任务中,例如股票价格预测、气象数据预测、交通流量预测等。通过对大量真实数据的训练和测试,我们可以验证该算法在各种场景下的有效性和稳定性。
除了算法本身,我们还需要考虑一些实际问题,例如模型的训练和调参方法、输入数据的预处理和特征工程等。这些因素都会对最终的预测结果产生影响,因此我们需要在实际应用中不断优化和改进。
总的来说,基于双向门控循环单元结合注意力机制的时序预测算法在当前的数据科学领域具有非常重要的意义。通过不断地研究和实践,我们可以进一步完善这一算法,使其在更多的实际场景中发挥作用。希望本文的研究能够为相关领域的研究者和从业者提供一些参考和启发,共同推动时序预测算法的发展和应用。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
-----------------------误差计算--------------------------
评价结果如下所示:
平均绝对误差MAE为:0.73456
均方误差MSE为: 0.98965
均方根误差RMSE为: 0.99481
决定系数R^2为: 0.97746
剩余预测残差RPD为: 6.6911
平均绝对百分比误差MAPE为: 0.022941
🔗 参考文献
本程序参考以下中文EI期刊,程序注释清晰,干货满满。
[1] 林靖皓,秦亮曦,苏永秀,et al.基于自注意力机制的双向门控循环单元和卷积神经网络的芒果产量预测[J].计算机应用, 2020, 40(S01):5.DOI:10.11772/j.issn.1001-9081.2019091537.
[2] 陆鑫,章险锋.基于注意力机制和双向门控循环单元的滑坡位移预测方法:202310774955[P][2023-11-23].
🎈 部分理论引用网络文献,若有侵权联系博主删除