✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
光伏发电作为一种清洁、可持续的能源形式,近年来发展迅速。然而,光伏发电量受天气因素影响很大,难以准确预测。为了提高光伏发电预测精度,本文提出了一种基于非洲秃鹫优化算法(AVOA)优化高斯过程回归(GPR)的光伏多输入单输出预测方法。该方法利用AVOA算法优化GPR模型的参数,从而提高模型的泛化能力和预测精度。通过在实际光伏发电数据上的实验,验证了该方法的有效性,并与其他方法进行比较,结果表明该方法能够有效提升光伏发电预测精度。
1. 引言
随着全球能源需求的不断增长和环境保护意识的提高,光伏发电作为一种清洁、可持续的能源形式,近年来发展迅速。光伏发电系统能够将太阳能转化为电能,并能够实现分布式发电,具有良好的社会效益和经济效益。然而,光伏发电量受天气因素(如太阳辐射强度、气温、风速等)影响很大,呈现出明显的随机性和波动性。准确预测光伏发电量对于提高光伏发电系统的效率、稳定电力系统运行和优化电网调度具有重要意义。
目前,常用的光伏发电预测方法主要包括传统统计方法、机器学习方法和混合方法。传统统计方法通常基于历史数据进行统计分析,例如时间序列分析、回归分析等,但其预测精度有限,难以应对复杂的气候条件。机器学习方法,如神经网络、支持向量机等,具有较好的学习能力,能够更好地捕捉数据中的非线性关系,但需要大量的训练数据,且模型参数优化过程较为复杂。
高斯过程回归(GPR)是一种基于概率统计的机器学习方法,能够有效解决小样本数据下的非线性回归问题。GPR模型通过将数据映射到高维空间,并在高维空间中进行回归分析,能够更好地捕捉数据中的非线性关系。然而,GPR模型的预测精度受其参数(如超参数和噪声方差)的影响很大,需要进行参数优化才能提高模型的性能。
非洲秃鹫优化算法(AVOA)是一种新型的元启发式优化算法,该算法模拟了非洲秃鹫的觅食行为,具有较强的全局搜索能力和局部搜索能力,能够有效解决复杂优化问题。本文将AVOA算法应用于GPR模型参数优化,提出了一种基于AVOA优化GPR的光伏多输入单输出预测方法。该方法利用AVOA算法的全局搜索能力,对GPR模型的参数进行高效优化,从而提高模型的泛化能力和预测精度。
2. 光伏发电预测模型
2.1 非洲秃鹫优化算法
非洲秃鹫优化算法(AVOA)是一种新型的元启发式优化算法,该算法模拟了非洲秃鹫的觅食行为,主要包括以下三个阶段:
- **搜索阶段:**秃鹫在空中随机飞行,寻找潜在的食物来源。
- **攻击阶段:**当秃鹫发现食物来源时,会利用其群体优势,对食物进行攻击。
- **探索阶段:**秃鹫会根据攻击结果,调整搜索策略,进一步寻找食物来源。
在AVOA算法中,每个秃鹫个体代表一个候选解,其位置向量表示解的具体值。算法通过不断迭代,更新每个个体的解,最终找到最优解。
2.2 基于AVOA优化GPR模型
本文将AVOA算法应用于GPR模型参数优化,提出了一种基于AVOA优化GPR的光伏多输入单输出预测方法。该方法利用AVOA算法的全局搜索能力,对GPR模型的参数(包括协方差函数参数和噪声方差)进行高效优化,从而提高模型的泛化能力和预测精度。
结论
本文提出了一种基于非洲秃鹫优化算法(AVOA)优化高斯过程回归(GPR)的光伏多输入单输出预测方法。该方法利用AVOA算法优化GPR模型的参数,从而提高模型的泛化能力和预测精度。通过在实际光伏发电数据上的实验,验证了该方法的有效性,并与其他方法进行比较,结果表明该方法能够有效提升光伏发电预测精度。
未来研究方向
未来研究将从以下几个方面进行探索:
- 扩展到其他类型的光伏发电系统: 将该方法扩展到其他类型的光伏发电系统,例如屋顶光伏、集中式光伏等。
- 考虑更多影响因素: 考虑更多影响光伏发电量的因素,例如云层覆盖率、降雨量等。
- 提高预测精度: 探索更先进的优化算法和机器学习模型,进一步提高光伏发电预测精度。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类