【光伏预测】基于非洲秃鹫优化算法AVOA优化高斯过程回归GPR实现光伏多输入单输出预测附Matlab代码

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

物理应用        机器学习

🔥 内容介绍

摘要

光伏发电作为一种清洁、可持续的能源形式,近年来发展迅速。然而,光伏发电量受天气因素影响很大,难以准确预测。为了提高光伏发电预测精度,本文提出了一种基于非洲秃鹫优化算法(AVOA)优化高斯过程回归(GPR)的光伏多输入单输出预测方法。该方法利用AVOA算法优化GPR模型的参数,从而提高模型的泛化能力和预测精度。通过在实际光伏发电数据上的实验,验证了该方法的有效性,并与其他方法进行比较,结果表明该方法能够有效提升光伏发电预测精度。

1. 引言

随着全球能源需求的不断增长和环境保护意识的提高,光伏发电作为一种清洁、可持续的能源形式,近年来发展迅速。光伏发电系统能够将太阳能转化为电能,并能够实现分布式发电,具有良好的社会效益和经济效益。然而,光伏发电量受天气因素(如太阳辐射强度、气温、风速等)影响很大,呈现出明显的随机性和波动性。准确预测光伏发电量对于提高光伏发电系统的效率、稳定电力系统运行和优化电网调度具有重要意义。

目前,常用的光伏发电预测方法主要包括传统统计方法、机器学习方法和混合方法。传统统计方法通常基于历史数据进行统计分析,例如时间序列分析、回归分析等,但其预测精度有限,难以应对复杂的气候条件。机器学习方法,如神经网络、支持向量机等,具有较好的学习能力,能够更好地捕捉数据中的非线性关系,但需要大量的训练数据,且模型参数优化过程较为复杂。

高斯过程回归(GPR)是一种基于概率统计的机器学习方法,能够有效解决小样本数据下的非线性回归问题。GPR模型通过将数据映射到高维空间,并在高维空间中进行回归分析,能够更好地捕捉数据中的非线性关系。然而,GPR模型的预测精度受其参数(如超参数和噪声方差)的影响很大,需要进行参数优化才能提高模型的性能。

非洲秃鹫优化算法(AVOA)是一种新型的元启发式优化算法,该算法模拟了非洲秃鹫的觅食行为,具有较强的全局搜索能力和局部搜索能力,能够有效解决复杂优化问题。本文将AVOA算法应用于GPR模型参数优化,提出了一种基于AVOA优化GPR的光伏多输入单输出预测方法。该方法利用AVOA算法的全局搜索能力,对GPR模型的参数进行高效优化,从而提高模型的泛化能力和预测精度。

2. 光伏发电预测模型

2.1 非洲秃鹫优化算法

非洲秃鹫优化算法(AVOA)是一种新型的元启发式优化算法,该算法模拟了非洲秃鹫的觅食行为,主要包括以下三个阶段:

  • **搜索阶段:**秃鹫在空中随机飞行,寻找潜在的食物来源。
  • **攻击阶段:**当秃鹫发现食物来源时,会利用其群体优势,对食物进行攻击。
  • **探索阶段:**秃鹫会根据攻击结果,调整搜索策略,进一步寻找食物来源。

在AVOA算法中,每个秃鹫个体代表一个候选解,其位置向量表示解的具体值。算法通过不断迭代,更新每个个体的解,最终找到最优解。

2.2 基于AVOA优化GPR模型

本文将AVOA算法应用于GPR模型参数优化,提出了一种基于AVOA优化GPR的光伏多输入单输出预测方法。该方法利用AVOA算法的全局搜索能力,对GPR模型的参数(包括协方差函数参数和噪声方差)进行高效优化,从而提高模型的泛化能力和预测精度。

结论

本文提出了一种基于非洲秃鹫优化算法(AVOA)优化高斯过程回归(GPR)的光伏多输入单输出预测方法。该方法利用AVOA算法优化GPR模型的参数,从而提高模型的泛化能力和预测精度。通过在实际光伏发电数据上的实验,验证了该方法的有效性,并与其他方法进行比较,结果表明该方法能够有效提升光伏发电预测精度。

未来研究方向

未来研究将从以下几个方面进行探索:

  • 扩展到其他类型的光伏发电系统: 将该方法扩展到其他类型的光伏发电系统,例如屋顶光伏、集中式光伏等。
  • 考虑更多影响因素: 考虑更多影响光伏发电量的因素,例如云层覆盖率、降雨量等。
  • 提高预测精度: 探索更先进的优化算法和机器学习模型,进一步提高光伏发电预测精度。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值