【无人艇】基于MPC的水面无人艇自主航行Matlab仿真2

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

水面无人艇(Unmanned Surface Vehicle, USV)作为一种新型的海洋装备,近年来得到了快速发展,其在海洋环境监测、水文测量、目标搜救等领域具有广泛的应用前景。然而,USV在复杂多变的海上环境中航行,需要解决轨迹跟踪控制、避障、路径规划等难题。模型预测控制(Model Predictive Control, MPC)作为一种先进的控制算法,因其能够有效处理多约束、非线性系统,并具有较好的鲁棒性和预测性,近年来被广泛应用于USV的自主航行控制。本文将基于MPC算法,针对水面无人艇的自主航行问题,进行Matlab仿真研究。

1. 引言

水面无人艇(USV)具有机动灵活、成本低廉、安全性高等优点,近年来在海洋领域得到了越来越广泛的应用。USV的自主航行控制是其应用的关键技术之一,而如何保证USV在复杂多变的海上环境中安全、高效地完成任务,是目前研究的重点。

传统的水面无人艇控制方法主要依靠PID控制等线性控制算法,这类算法在处理非线性系统、多约束问题以及外部干扰时存在一定的局限性。模型预测控制(MPC)是一种能够有效解决上述问题的先进控制算法,其原理是基于模型预测未来一段时间内的系统状态,并通过优化策略计算控制输入,以使系统达到预期的目标。

MPC算法具有以下优点:

  • 能够处理非线性系统,适用于具有复杂动力学模型的水面无人艇。

  • 能够处理多约束问题,如航速约束、航向约束、避障约束等。

  • 具有较好的鲁棒性,能够有效应对外部干扰和模型误差。

  • 能够进行在线优化,适应复杂多变的海上环境。

本文将针对水面无人艇的自主航行问题,基于MPC算法进行Matlab仿真研究,旨在验证MPC算法在水面无人艇自主航行中的有效性。

2. 水面无人艇动力学模型

水面无人艇的动力学模型可以采用六自由度模型进行描述,其运动方程如下:

3.3 MPC控制系统设计

在MPC控制系统设计中,需要确定以下关键参数:

  • 预测时域: MPC算法预测未来多长时间内的系统状态。

  • 控制时域: MPC算法控制输入序列的长度。

  • 权重矩阵: 定义目标函数中不同状态变量和控制量的权重。

  • 约束条件: 包括航速约束、航向约束、避障约束等。

4. Matlab仿真

4.1 仿真环境

仿真环境:Matlab 2021b

4.2 仿真模型

仿真模型基于上述水面无人艇动力学模型,并加入了MPC控制算法。

4.3 仿真场景

仿真场景为:

  • USV初始位置为 (0, 0),目标位置为 (100, 100)。

  • 海域中存在障碍物。

  • USV需要避开障碍物并到达目标位置。

4.4 仿真结果

仿真结果表明,基于MPC算法的USV航行控制能够有效地跟踪目标轨迹,避开障碍物,并保证了USV的航行安全。

4.5 仿真结论

仿真结果验证了MPC算法在水面无人艇自主航行控制中的有效性。MPC算法能够有效处理非线性系统、多约束问题以及外部干扰,并具有较好的鲁棒性和预测性,适用于水面无人艇的自主航行控制。

5. 总结

本文基于MPC算法,针对水面无人艇的自主航行问题,进行了Matlab仿真研究。仿真结果表明,MPC算法能够有效地控制USV跟踪目标轨迹,避开障碍物,并保证了USV的航行安全。MPC算法在水面无人艇自主航行控制中具有重要的应用价值。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值