✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
水面无人艇(Unmanned Surface Vehicle, USV)作为一种新型的海洋装备,近年来得到了快速发展,其在海洋环境监测、水文测量、目标搜救等领域具有广泛的应用前景。然而,USV在复杂多变的海上环境中航行,需要解决轨迹跟踪控制、避障、路径规划等难题。模型预测控制(Model Predictive Control, MPC)作为一种先进的控制算法,因其能够有效处理多约束、非线性系统,并具有较好的鲁棒性和预测性,近年来被广泛应用于USV的自主航行控制。本文将基于MPC算法,针对水面无人艇的自主航行问题,进行Matlab仿真研究。
1. 引言
水面无人艇(USV)具有机动灵活、成本低廉、安全性高等优点,近年来在海洋领域得到了越来越广泛的应用。USV的自主航行控制是其应用的关键技术之一,而如何保证USV在复杂多变的海上环境中安全、高效地完成任务,是目前研究的重点。
传统的水面无人艇控制方法主要依靠PID控制等线性控制算法,这类算法在处理非线性系统、多约束问题以及外部干扰时存在一定的局限性。模型预测控制(MPC)是一种能够有效解决上述问题的先进控制算法,其原理是基于模型预测未来一段时间内的系统状态,并通过优化策略计算控制输入,以使系统达到预期的目标。
MPC算法具有以下优点:
-
能够处理非线性系统,适用于具有复杂动力学模型的水面无人艇。
-
能够处理多约束问题,如航速约束、航向约束、避障约束等。
-
具有较好的鲁棒性,能够有效应对外部干扰和模型误差。
-
能够进行在线优化,适应复杂多变的海上环境。
本文将针对水面无人艇的自主航行问题,基于MPC算法进行Matlab仿真研究,旨在验证MPC算法在水面无人艇自主航行中的有效性。
2. 水面无人艇动力学模型
水面无人艇的动力学模型可以采用六自由度模型进行描述,其运动方程如下:
3.3 MPC控制系统设计
在MPC控制系统设计中,需要确定以下关键参数:
-
预测时域: MPC算法预测未来多长时间内的系统状态。
-
控制时域: MPC算法控制输入序列的长度。
-
权重矩阵: 定义目标函数中不同状态变量和控制量的权重。
-
约束条件: 包括航速约束、航向约束、避障约束等。
4. Matlab仿真
4.1 仿真环境
仿真环境:Matlab 2021b
4.2 仿真模型
仿真模型基于上述水面无人艇动力学模型,并加入了MPC控制算法。
4.3 仿真场景
仿真场景为:
-
USV初始位置为 (0, 0),目标位置为 (100, 100)。
-
海域中存在障碍物。
-
USV需要避开障碍物并到达目标位置。
4.4 仿真结果
仿真结果表明,基于MPC算法的USV航行控制能够有效地跟踪目标轨迹,避开障碍物,并保证了USV的航行安全。
4.5 仿真结论
仿真结果验证了MPC算法在水面无人艇自主航行控制中的有效性。MPC算法能够有效处理非线性系统、多约束问题以及外部干扰,并具有较好的鲁棒性和预测性,适用于水面无人艇的自主航行控制。
5. 总结
本文基于MPC算法,针对水面无人艇的自主航行问题,进行了Matlab仿真研究。仿真结果表明,MPC算法能够有效地控制USV跟踪目标轨迹,避开障碍物,并保证了USV的航行安全。MPC算法在水面无人艇自主航行控制中具有重要的应用价值。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类