【无人机】遥控飞机 eVTOL_固定翼和四旋翼飞行器集成的建模和控制附Matlab代码

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击主页 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

本项目旨在针对负载递送应用,对垂直起降(VTOL)无人机进行建模和控制。我们的目标是开发一个高效的控制系统,使无人机能够准确地维持120米的高度并把包裹递送到距离原点特定距离的位置。VTOL结合了固定翼飞机和四旋翼无人机的优势,既能实现远距离航行,又能提供高度的机动性。

本项目涉及不同控制器的设计、实现和测试,以便识别出针对固定翼和四旋翼组件最有效的控制器。针对四旋翼无人机,我们测试并比较了改进的PID控制器、遗传算法和非线性模型预测控制器(NLMPC)。对于固定翼飞机,我们选择了线性二次型调节器(LQR)、总能量控制系统(TECS)、模糊逻辑控制器(FLC)和模型预测控制器(MPC)进行分析和比较。对这些控制器,我们将从暂态响应、抗扰性和抗噪性方面进行评估。

通过分析,我们发现对于固定翼无人机,MPC是更优的控制器;而对于四旋翼无人机,NMPC是最佳选择。为了在负载递送中实现高性能和精度,应该将这两个控制器结合到VTOL设计中。

一、 概述

无人机技术近年来发展迅速,已成为各行各业的重要组成部分。其中,垂直起降无人机(VTOL)凭借其灵活性和多功能性,在负载递送、巡检、侦察等领域展现出巨大的潜力。VTOL无人机结合了固定翼飞机的航程优势和四旋翼无人机的机动性优势,使其成为复杂环境下负载递送任务的理想选择。

本项目研究针对VTOL无人机进行负载递送任务的建模和控制。我们深入分析了VTOL无人机系统的动力学特性,设计并实现了不同类型的控制器,并通过仿真和实验证明了所选控制器的优越性。

二、 VTOL无人机系统建模

VTOL无人机系统是一个复杂的多体系统,其动力学特性受到多种因素的影响,包括气动力、螺旋桨推力、重力等。为了准确地描述VTOL无人机的运动,我们建立了基于牛顿定律的动力学模型。

2.1 固定翼部分

对于固定翼部分,我们采用了六自由度运动方程,考虑了机翼升力、阻力、俯仰力矩、滚转力矩和偏航力矩等气动力。同时,我们也考虑了发动机推力、重力和空气阻力等因素。

2.2 四旋翼部分

对于四旋翼部分,我们建立了基于四旋翼无人机动力学模型,该模型考虑了螺旋桨推力、重力、空气阻力和旋翼转动惯量等因素。我们使用向量代数和旋翼运动学来描述四旋翼无人机的运动状态。

三、 控制系统设计

为了实现VTOL无人机的稳定控制和精准负载递送,我们设计了不同的控制器,分别针对固定翼和四旋翼部分进行优化。

3.1 固定翼部分

针对固定翼部分,我们研究了以下四种控制器:

  • 线性二次型调节器 (LQR):LQR是一种基于状态空间理论的线性控制器,它通过最小化一个二次型性能指标来实现最优控制。

  • 总能量控制系统 (TECS):TECS是一种基于能量平衡的非线性控制器,它通过控制飞机的升力和速度来实现稳定的飞行。

  • 模糊逻辑控制器 (FLC):FLC是一种基于模糊逻辑理论的非线性控制器,它通过利用模糊规则来实现对飞机的控制。

  • 模型预测控制器 (MPC):MPC是一种基于模型预测的先进控制方法,它通过预测未来一段时间内的系统状态来优化控制输入。

经过比较和分析,我们发现MPC在控制精度、抗扰性和抗噪性方面表现出色,被选为固定翼部分的最优控制器。

3.2 四旋翼部分

针对四旋翼部分,我们研究了以下三种控制器:

  • 改进的PID控制器: PID控制器是经典的反馈控制方法,我们对其进行了改进,使其能够更好地应对四旋翼无人机的非线性特性和干扰。

  • 遗传算法: 遗传算法是一种启发式优化方法,它通过模拟生物进化过程来寻找最优的PID参数。

  • 非线性模型预测控制器 (NMPC): NMPC是一种基于模型预测的先进控制方法,它能够考虑四旋翼无人机的非线性动力学模型,并通过优化未来一段时间的控制输入来实现稳定和精准的控制。

经过比较和分析,我们发现NMPC在控制精度和抗干扰性方面表现突出,被选为四旋翼部分的最优控制器。

四、 仿真和实验验证

为了验证所设计的控制器的有效性,我们进行了仿真和实验验证。

4.1 仿真验证

我们使用Matlab/Simulink平台对VTOL无人机的动力学模型和控制系统进行了仿真。仿真结果表明,所设计的MPC和NMPC控制器能够有效地控制VTOL无人机,使其能够稳定飞行并准确地完成负载递送任务。

4.2 实验验证

我们搭建了VTOL无人机实验平台,并对所设计的控制器进行了实地测试。实验结果验证了仿真结果,证明了所设计的MPC和NMPC控制器能够有效地控制VTOL无人机,使其能够在复杂环境下稳定飞行并完成负载递送任务。

五、 结论与展望

本项目针对VTOL无人机负载递送任务,设计并实现了基于MPC和NMPC的控制系统,并通过仿真和实验验证了其有效性。研究结果表明,所设计的控制器能够有效地控制VTOL无人机,使其能够稳定飞行并准确地完成负载递送任务。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值