【电缆】中压电缆局部放电的传输模型研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

一、引言

中压电缆作为城市配电网和工业电力传输的关键设施,其运行的可靠性直接关系到供电稳定性和用户用电质量。局部放电是中压电缆绝缘劣化的重要征兆,也是导致电缆故障的潜在隐患 。深入研究中压电缆局部放电的传输特性,构建准确的传输模型,能够实现对局部放电信号的有效检测与定位,为电缆状态评估和故障预警提供重要依据,对于保障电力系统安全、稳定运行具有重要的现实意义。

二、中压电缆局部放电原理

2.1 局部放电产生原因

中压电缆在生产制造过程中,可能存在绝缘材料缺陷(如气隙、杂质等)、工艺瑕疵(如屏蔽层不连续、绝缘厚度不均匀);在长期运行过程中,受到电应力、机械应力、热应力以及环境因素(如湿度、腐蚀性气体)的影响,电缆绝缘会逐渐老化 。当电缆绝缘内部的电场强度超过局部介质的击穿场强时,就会发生局部放电现象 。例如,绝缘气隙中的气体在高电场作用下发生电离,形成放电通道,产生局部放电。

2.2 局部放电对电缆的危害

局部放电会产生高温、高能粒子和电磁辐射等,这些因素会进一步加速电缆绝缘的劣化 。高温会导致绝缘材料热降解,降低其电气性能;高能粒子会撞击绝缘分子,破坏分子结构;电磁辐射可能干扰附近的电子设备。随着局部放电的持续发展,绝缘缺陷会不断扩大,最终可能导致电缆绝缘击穿,引发短路故障,造成大面积停电事故 。

三、中压电缆局部放电传输模型构建

3.1 基于电路理论的传输模型

  • 等效电路模型:将中压电缆视为由分布参数(电阻、电感、电容、电导)组成的传输线,局部放电源等效为一个脉冲电流源 。根据电缆的结构参数(如导体半径、绝缘厚度、介电常数等)和电气参数,建立电缆的等效电路。在该模型中,局部放电信号在电缆中传输时,会受到电缆分布参数的影响,发生衰减、畸变和延迟 。通过求解电路方程,可以分析局部放电信号在电缆中的传输特性 。
  • 参数计算与模型优化:准确获取电缆的分布参数是构建有效等效电路模型的关键 。通常采用测量方法(如频域反射法、时域反射法)或基于电缆结构参数的理论计算方法来确定参数值 。同时,考虑电缆的实际运行环境(如温度变化对参数的影响),对模型进行优化,以提高模型的准确性 。

3.2 基于电磁场理论的传输模型

  • 有限元方法建模:利用有限元分析软件(如 COMSOL Multiphysics、ANSYS Maxwell),根据中压电缆的几何结构和材料特性,建立三维电磁场模型 。将局部放电产生的电磁波作为激励源,求解麦克斯韦方程组,得到电缆内部和周围空间的电磁场分布 。该模型能够直观地展示局部放电信号在电缆中的传播过程,以及电缆结构对信号传输的影响 。
  • 模型验证与应用:通过与实际测量数据或实验结果进行对比,验证基于电磁场理论的传输模型的准确性 。该模型可以用于研究不同电缆结构(如单芯电缆、三芯电缆)、不同敷设方式(直埋、电缆沟、隧道)下局部放电信号的传输特性,为电缆设计和局部放电检测方案的制定提供理论支持 。

3.3 考虑环境因素的复合传输模型

中压电缆的运行环境复杂多变,环境因素(如土壤湿度、温度、周围电磁干扰)会对局部放电信号的传输产生影响 。在构建传输模型时,将环境因素纳入考虑范围,建立复合传输模型 。例如,对于直埋电缆,考虑土壤的介电常数和电导率随湿度变化的特性,将其作为电缆传输模型的参数;对于存在电磁干扰的环境,在模型中加入干扰源,分析干扰对局部放电信号检测的影响 。

⛳️ 运行结果

🔗 参考文献

[1] 方静,魏占朋,殷强,等.220kV高压电缆局部放电信号传输特性研究[J].电力系统及其自动化学报, 2021, 33(1):6.DOI:10.19635/j.cnki.csu-epsa.000593.

[2] 吴斌,王春雷.局部放电信号在交联聚乙烯电缆的传播特性仿真研究[J].电工技术, 2020(24):2.DOI:10.19768/j.cnki.dgjs.2020.24.068.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值