✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本论文针对配电网中光伏储能系统的选址定容问题,构建了基于粒子群优化算法(PSO)的双层优化配置模型。上层模型以投资成本、运行成本和网损成本最小为目标,优化光伏电站和储能系统的安装位置与容量;下层模型在给定上层配置方案的基础上,通过潮流计算模拟配电网运行状态,验证系统的安全性和可靠性。以 IEEE 33 节点系统为例进行仿真实验,结果表明该模型能够有效实现光伏储能的优化配置,降低系统运行成本,提升配电网的运行性能。
关键词
粒子群优化算法;配电网;光伏储能;双层优化;选址定容;IEEE 33 节点
一、引言
随着全球对清洁能源的需求不断增长,光伏发电在配电网中的渗透率逐渐提高。然而,光伏发电的间歇性和波动性给配电网的稳定运行带来了挑战。储能系统能够实现电能的时空转移,有效平抑光伏出力波动,提高配电网对新能源的消纳能力 。因此,合理规划光伏储能系统的位置和容量,即选址定容,成为保障配电网安全、经济运行的关键。
粒子群优化算法作为一种智能优化算法,具有结构简单、收敛速度快、易于实现等优点,在电力系统优化领域得到了广泛应用 。目前,已有不少学者将粒子群优化算法应用于光伏储能的配置研究,但多数模型未充分考虑配电网运行状态对配置方案的影响。本文提出的双层优化配置模型,通过上层优化配置方案和下层模拟运行状态的交互,能够更全面、准确地实现光伏储能的优化配置。
⛳️ 运行结果
📣 部分代码
🔗 参考文献
[1] 白牧可,唐巍,谭煌,等.基于虚拟分区调度和二层规划的城市配电网光伏-储能优化配置[J].电力自动化设备, 2016, 36(5):8.DOI:10.16081/j.issn.1006-6047.2016.05.024.
[2] 胡海鹏,赵平,李妍,等.计及"高龄"光伏出力衰减的配电网储能经济优化配置[J].电力工程技术, 2025, 44(1):175-182.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类