使用云GPU进行yolov5的训练--傻瓜式保姆级教程!!!建议收藏✨✨!

目录

为何使用云GPU训练?

云服务器训练教程:

1.创建实例

 2.上传数据(OSS命令)

以下是oss的操作过程

训练模型时可能出现的报错:


若想将远程服务器连接到本地Pycharm,在本文学习完后跳转至下一博客:

本地Pycharm连接远程服务器训练模型教程-yolov5为例_耿鬼喝椰汁的博客-CSDN博客

为何使用云GPU训练?

        我们总是花费长达十几个小时去训练模型,这对于我们的运行设备的要求很高,一般的学生(比如说我)想拿自己的笔记本电脑跑训练但是可能电脑配置低,会因为很多问题跑不起来,就算跑起来了,速度也很慢,还会导致电脑发热,这个过程对于我们的电脑的伤害是很大的。  

下面我们来介绍一下如何在云服务器使用 yolov5 模型来训练我们的数据集(这里以恒源云为例):

云服务器训练教程:

恒源云官网:恒源云_GPUSHARE-恒源智享云

1.创建实例

首先我们要进行登录(没有账号的注册下账号,很简单。)--记住账号密码,上传数据时使用oss方法要用到用户名和密码。

登陆后点击右上角小人点击我的实例

 在我的实例 中,点击创建实例

      接下来选择想租什么配置的设备(我这里选择了3080Ti-12G),计费模式建议按量付费,也就是按小时付费。

 然后如图选择预装的python环境(尽量和yolo的版本匹配)最后点击创建实例。

       一般系统默认开机,如果不使用的话赶紧关机,从开机开始就计费了。这样我们的实例就创建好了。下图是关机状态,要开机使用点击启动就好了。

 2.上传数据(OSS命令)

 实例创建好了接下来我们就要上传数据了,我们使用oss命令方法来上传数据:

       如下图打开帮助文档(文档中心),在左面导航栏找到数据上传, 数据上传里面的OSS命令上传,后面就是照着指导手册做,把自己的项目文件夹打包传上去。

 点击数据上传:

点击OSS命令安装: 

 然后我们要下载oss 工具。注意:这里软件下载是按照自己电脑的系统,注意不要搞混 

( 如果实在不会使用oss,也可以参考文档里的其他方式(xftp等),上传速度可能会很慢 )

以下是oss的操作过程

下载完之后运行,然后login(登录用的是你注册网站的账号)

 然后使用linux的文件命令将本地的项目压缩包上传到文件系统中:

cp (你的压缩包路径) oss://

上传过程: 

 下图这样就算成功(将数据传到了个人数据集--中转站,下面我们要把中转站的数据集传到云服务器):

      接下来我们启动实例,如果是会员可以选择无卡启动(为了省钱,该模式下内存只有1G,费用是0.1元/小时,在要用到gpu训练数据集时要退出此模式正式启动,我没会员选择启动)

      启动完之后使用JupyterLab进行操作 (从这里开始是linux系统下操作,如果前面实例创建选择了windows系统,请类比操作或参考帮助文档,一般都是linux系统下的实例。)

   进入后我们点击终端,在终端中进入hy-tmp目录

 输入代码在终端中进入hy-tmp目录:(依次输入以下代码):

cd /hy-tmp/ #打开文件
ll #显示列表中文件
pwd

 在终端中登录登录oss客户端:

oss login

然后输入账户密码: 

 从oss文件系统中(中转站)下载项目压缩包:

oss cp oss://yolov5-6.1.zip ./  #这里最后压缩文件名称改成自己的。注意zip与./中间有空格

下面这样就是运行成功了: 

 下图这样就上传好了

 下面命令解压压缩包

 7z x yolov5-6.1.zip

解压过程:

解压后的文件:

 然后就可以在这个终端上正常运行项目啦

一般来说库的都是预装好的,也可以检查一下 

pip install -r requirements.txt

运行此代码要进入yolov5文件夹 

 之后我们就可以在云端上训练数据集啦。

可以在训练代码(train.py)的最后一行加上

import os
os.system('shutdown')

   这样训练完就自动关机了 ,可节省我们的资源。

训练模型时可能出现的报错:

1.libgthread-2.0.so.0: cannot open shared object file: No such file or directory

解决方法:

依次在终端中输入以下代码:

apt-get update
#安装额外的包
apt-get install libxext-dev
apt-get install libxrender1
apt-get install libglib2.0-dev

2.找不到数据集:

      注意yaml中路径问题,因为在云端,这时数据集的路径就变了,要在yaml文件中修改训练集和测试集的路径。


我的训练过程:


 若想将远程服务器连接到本地Pycharm,在本文学习完后跳转至下一博客:

本地Pycharm连接远程服务器训练模型教程-yolov5为例_耿鬼喝椰汁的博客-CSDN博客


 这篇云端GPU运行yolov5模型教程到这里就结束啦,如果有什么问题可以在评论区留言呀~

如果帮助到大家,可以一键三连+关注支持下~

### 如何将 VirtualBox 虚拟机存储位置设置为 D 盘 通过调整 VirtualBox 的全局配置以及手动迁移现有虚拟机文件的方式,可以实现将虚拟机的存储位置更改为 D 盘。以下是具体的操作说明: #### 修改默认存储路径 进入 VirtualBox 工具栏中的 **“管理”** 功能模块,在其中找到并打开 **“全局设定”** 页面[^2]。在此页面中,可以通过更改默认的虚拟机存储目录来指定新的路径(例如 `D:\VirtualMachines`)。完成此操作后,后续创建的新虚拟机会自动保存至该新路径下。 #### 迁移已有虚拟机到目标驱动器 对于已经存在的虚拟机实例,如果它们当前位于 C 盘,则需执行以下步骤将其迁移到 D 监: 1. 手动复制现有的 `.vbox` 和对应的 `.vdi` 文件夹至期望的目标位置 (比如 D:); 2. 使用命令行工具或者图形界面重新注册这些已移动过的机器回 VirtualBox 中去;注意此时可能还需要更新某些内部链接地址以匹配实际变动后的物理存放地点情况。 此外,在整个过程中确保完全关闭所有运行状态下的相关联程序和服务是非常重要的一步措施之一[^3] ,这样能够有效防止数据丢失或损坏等问题的发生几率降到最低限度之内。 ```bash VBoxManage modifyhd "path_to_your_vdi_file_on_D_drive.vdi" --resize new_size_in_MB ``` 上述脚本展示了如何利用 VBoxManage 命令扩展 VDI 镜像大小的例子 。这同样适用于当您希望增加分配给特定操作系统使用的硬盘空间容量时的情境之下应用起来非常方便快捷而且效率极高。 最后提醒一下关于不同平台之间互相转换的时候要注意兼容性问题[^4], 特别是在涉及到硬件抽象层差异较大的场景下面临挑战更大一些.
评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值