有朋友跟我说,他被写作搞得头疼死了。每次打算写点什么,脑子里的想法跟脱缰的野马似的,越跑越远。
甚至有的时候明明大脑里有很多想说的内容,结果不知怎么的,在编辑器里却一句话都表达不出来。
回想起之前我刚开始写文章的时候,总是东拉西扯,最后自己都不知道在说什么。
其实写作,尤其是拿AI工具去写作,说难也难,说容易也容易。
关键在于能不能抓住重点,别让自己的思路像野狗一样到处乱跑。
我发现,想要写出一篇好文章,标题真的是重中之重。
标题写得好,才能抓住读者的眼球。
这次泰迪就来分享一些自己总结的写作经验,希望能帮到大家。
标题的威力
为什么说标题比图片更重要?
因为图片再好看,也只是浮于表面,而一个有吸引力的标题却能引发人的好奇心,让人们不自觉地想点开以便于了解更多。
怎么写吸引人的标题
要写出那种让人忍不住点进去的标题,并不是难事。
只要掌握泰迪学到的几个要点,就能事半功倍:
-
击中痛点:像“如何一个月内用AI裸辞,然后躺平?”这样的标题,立马就勾起了人的兴趣。
-
数字魔法:用数字来增加可信度,比如“5天掌握10种写作技巧”,让人觉得内容靠谱。
-
引发思考:用问题来勾起读者的兴趣,比如“为什么你一事无成?”这种问题,立马让人想知道答案。
-
制造紧迫感:利用读者的焦虑心理,比如“再不搞这些,你就完蛋了!”这样的标题,让人紧张得想马上点进去。
跑题,正常
跑题,泰迪可是深有体会。
吃饭的时候闲聊,常常一不小心就扯远了,从舌尖上的中国再到国际局势,谁都不知道话题是怎么跳转的😂。
为了改掉这个毛病,我尝试了各种方法,终于找到了一些小技巧,才在AI写作中慢慢控制住了这个毛病。
写作公式
为了不再跑题,我给自己定了个“写作公式”,你们也可以试试:
写作公式 = (问题 + 数据 + 问题 + 紧迫感) × 案例 + 逻辑
解释:``问题:提出一个引人注意的痛点或疑问,吸引读者的兴趣。``数据:用具体的数据或事实来支持你的观点,增加内容的可信度。``问题:再次提出一个引发读者思考的问题,进一步引导读者深入思考。``紧迫感:传递一种紧迫感,让读者感受到立即采取行动的必要性。``案例:提供具体的实例或案例,帮助读者更好地理解你的观点。``逻辑:遵循平台的逻辑和风格,确保内容符合读者需求和平台的规范。
例子:
-
问题:为什么我们总是记不住单词?
-
数据:研究表明,使用联想记忆法的人记住单词的速度比传统方法快50%。
-
问题:你是否尝试过联想记忆法?
-
紧迫感:如果再不改变学习方法,你的英语水平将停滞不前!
-
**案例:**你可以讲述一个学生使用联想记忆法后,英语成绩显著提高的故事。这种具体的例子能让读者更好地理解你的观点,并且觉得这些方法是切实可行的。
-
**逻辑:**文章要有清晰的结构,逻辑通顺,让读者能跟上你的思路。清晰的逻辑可以使文章有吸引力,更有说服力!
AI写作的小秘密
很多人觉得,用AI写文章太机械,没有人情味。
其实AI写文章的质量取决于操作者自身水平。
你给AI一个好的例子,它就能写出好的内容。
就像我们小时候学写作文,老师给我们看范文,我们模仿着写,水平自然就上来了。
巧用提示词
写作时,提示词非常重要。
你可以让AI模仿某个作家的风格,这样写出来的东西就更有个性、更吸引人。
假设你要写一篇关于旅行的文章,你可以告诉AI,用“莫言”的风格来写一段关于“旅行的意义”。
此处我们请出Kimi老师为我们演示。
AI通过模仿,会写得特别有味道。
这是提示词:
用xxx的视角、文笔、风格、语法来写“xxx”。禁止有ai味儿。
多练多反馈
光有技巧还不够,实践才是硬道理。
每天坚持练习,多写多看多总结,你的写作水平一定会突飞猛进。建议大家每天写一点,然后请朋友或者家人帮忙看看,提提意见,这样进步会更快。
最后
使用AI进行写作时要理解对应平台的逻辑,掌握一些写作小技巧。最重要的是学会利用AI工具的强大学习能力,让AI去辅助产出内容。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。