脑机接口2.0:多模态融合技术的崛起

Hybrid Brain–ComputerInterfaces and Their Applications

随着科技的飞速发展,脑机接口(BCI)技术正逐渐从科幻走向现实,特别是混合脑机接口(Hybrid BCI)的出现,正在彻底改变人类与机器的交互方式。本期文章将带领大家深入探索混合脑机接口技术的原理与应用。通过结合多种脑波信号和智能技术,混合BCI在医疗康复、智能设备控制等领域展现了巨大的潜力。我们将探讨混合BCI如何提高信息传输效率,提升多维度控制能力,并为未来的人机协作带来更多可能性。让我们一起走进这个充满未来感的技术世界,发现它如何改变我们生活的方方面面。

01.第1节 脑机接口(BCI)简介

脑机接口系统为大脑提供了一条无需依赖传统神经输出途径的通信通道。常用的脑信号测量技术包括近红外光谱(NIRS)、功能磁共振成像(fMRI)、磁共振脑电图(MEG)等,而本文将重点讨论基于脑电图(EEG)的BCI系统。EEG作为一种低成本、易于获取实时响应的工具,被广泛应用于脑机接口的研究中。通过检测大脑的不同脑波模式,如P300电位、稳态视觉诱发电位(SSVEP)、以及运动想象(MI)引发的事件相关同步/去同步(ERS/ERD),研究人员能够精确地获取大脑的意图,并将其转化为外部设备的控制命令。

图1: 脑机接口(BCI)系统的基本设计与操作

1. 多模态混合BCI

美国心理学家亚伯拉罕·马斯洛曾提出“工具定律”,这一定律常用的表达是:“如果你手里只有一把锤子,你会把所有问传统的单模态BCI系统大多依赖于单一信号或单一脑波模式,如单纯基于EEG信号或仅使用P300电位的系统。虽然这些系统已经取得了一定成果,但仍面临信息传输率低、维度控制有限等挑战。为解决这些问题,混合BCI技术应运而生。混合BCI结合了多种脑波模式、多感官刺激、以及多信号技术,从而实现了更加灵活和强大的控制能力。例如,结合运动想象和SSVEP信号的混合BCI不仅能够增强信号的准确性,还可以提升用户在多维度上的控制能力。这一技术在轮椅控制、康复训练等应用中展现了巨大的潜力。

图2: 四类混合脑机接口

2. 典型应用案例

混合BCI技术不仅可以应用于常规的用户交互系统,还可以在医疗康复领域大展身手。例如,结合BCI和机器人技术的混合系统被用于帮助中风患者进行手臂康复训练。研究表明,BCI-辅助的康复机器人能够有效提升患者的运动恢复能力。另一个经典应用是基于P300电位和SSVEP的脑控轮椅系统,用户可以通过大脑信号选择轮椅的目标位置,轮椅会自主导航到指定位置。这种多阶段的混合BCI控制系统为轮椅使用者提供了更高的自主性。

3. 混合BCI的多维控制与信号融合

混合脑机接口技术的核心优势在于其能够结合多种脑波信号和感官输入,来实现更加复杂的多维控制。通过将不同的脑波模式(如P300、SSVEP和运动想象)进行融合,混合BCI能够帮助用户实现更加细致和精确的控制。这种信号融合的方式打破了传统BCI系统中单一信号输入的局限,大大提高了信息传输效率。例如,在康复训练中,结合运动想象和SSVEP信号,能够帮助中风患者通过大脑信号控制机械假肢,甚至通过脑电图实时反馈患者的康复进展情况。通过这些信号的结合,系统能够更准确地捕捉用户的意图,提供更自然的操作体验。

图3: 混合脑开关的图形用户界面(GUI)

结合了P300和SSVEP信号

4. 基于多种信号的混合BCI

除了单纯依赖EEG信号,现代的混合BCI系统还可以结合其他类型的生理信号,例如肌电图(EMG)和眼电图(EOG)。这些额外的信号输入有助于提升系统的鲁棒性和稳定性,特别是在长时间使用过程中。例如,基于EEG和EMG的混合BCI系统可以同时监测大脑活动和肌肉运动。这样,当用户的大脑信号较弱时,肌肉信号可以作为辅助输入,确保系统的持续正常运行。这种多信号融合的方式不仅提高了系统的控制精度,还大大提升了其在复杂场景中的适用性。

图4: 用于二维光标控制和目标选择的混合BCI图形用户界面

02.第2节 多智能技术与混合BCI的结合

为了进一步增强混合BCI的智能化水平,研究人员正在探索将BCI与智能机器人、自主导航系统等技术相结合。例如,基于脑机接口和自主导航系统的智能轮椅能够通过用户的脑电信号控制方向,同时结合导航系统自主规避障碍物,为使用者提供更为智能和安全的出行体验。另一个值得关注的应用是结合BCI和智能康复机器人,为需要长期康复训练的患者提供更高效的治疗方案。这些智能化技术的引入,极大地提升了脑机接口在医疗领域的应用价值,为患者带来了全新的康复体验。

图5: 所有受试者在每种刺激条件下“Pz”电极的平均事件相关电位(ERP)波形

03.第3节 未来发展与展望

混合BCI技术的迅速发展为脑机接口技术的应用开辟了全新的可能性。随着脑波信号识别技术和多模态融合技术的不断进步,未来的混合BCI系统将具备更高的鲁棒性、精确性和灵活性。无论是在医疗康复、智能设备控制,还是在更广泛的智能化领域,混合BCI都将发挥不可忽视的作用。随着更多的智能技术融入脑机接口,BCI系统的适用范围将进一步拓展。从轮椅控制、假肢训练,到意识检测与远程操作,混合BCI为未来的人机交互带来了无限可能。我们有理由相信,随着技术的不断完善,BCI将从实验室走向日常生活,成为现代智能生活的重要组成部分。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值