Lilian Weng万字长文:强化学习中的Reward Hacking

当强化学习(RL)代理利用奖励函数的缺陷或模糊性获得高额奖励时,奖励黑客就会出现,而不会真正学习或完成预定任务。奖励黑客之所以存在,是因为强化学习环境通常并不完美,而且从根本上说,准确指定奖励函数具有挑战性。

随着语言模型((Language Models,LMs)广泛应用于各种任务,以及 RLHF(Reinforcement Learning from Human Feedback)成为事实上的对齐训练方法,语言模型 RL 训练中的奖励黑客行为已成为一项严峻的实际挑战。模型学会修改单元测试以通过编码任务,或者响应包含模仿用户偏好的偏差,这些情况都非常令人担忧,而且很可能是阻碍人工智能模型在现实世界中部署更多自主使用案例的主要因素之一。

过去有关这一主题的大部分工作都是理论性的,侧重于定义或证明奖励黑客行为的存在。然而,对实际缓解措施的研究,特别是在 RLHF 和 LLM 的背景下,仍然十分有限。我特别希望今后能有更多的研究工作来了解和开发针对奖励黑客的缓解措施。希望我很快就能在专门的文章中介绍缓解措施。

背景

RL 中的奖励函数

奖励函数定义了任务,而奖励塑形对强化学习中的学习效率和准确性有重大影响。为 RL 任务设计奖励函数常常给人一种 "黑暗艺术 "的感觉。造成这种复杂性的因素有很多:如何将大目标分解成小目标?奖励是稀疏的还是密集的?如何衡量成功与否?各种选择都可能导致良好或有问题的学习动态,包括无法学习的任务或可黑客攻击的奖励功能。关于如何在 RL 中进行奖励塑造的研究由来已久。

在 1999 年 Ng 等人的一篇论文[1]中,作者研究了如何在马尔可夫决策过程(MDPs)中修改奖励函数,使得最优策略保持不变。他们发现线性变换是可行的。对于一个马尔可夫决策过程,想要创建一个变换后的马尔可夫决策过程,其中,,这样可以引导学习算法更加高效。给定一个实值函数,如果对于所有的,,满足特定条件,那么就是一个基于势函数的塑造函数。

这可以保证贴现后的的总和(即最终为 0。如果是这样一个基于势的成形函数,那么确保和具有相同的最优策略既是充分条件也是必要条件。

当,并且如果我们进一步假设,其中是吸收状态,且,那么对于所有的,:

这种奖励塑造形式允许我们将启发式方法纳入奖励函数中,以加快学习速度,而不会影响最优策略。

虚假相关性(Spurious Correlation)

分类任务中的虚假相关或捷径学习(盖尔霍斯等人,2020 年)是一个与奖励破解密切相关的概念。虚假或捷径特征可能导致分类器无法按预期进行学习和泛化。例如,如果所有狼的训练图像都包含雪,那么用于区分狼和哈士奇的二分类器可能会过度拟合雪的背景(里贝罗等人,2024 年)。

图1. 如果模型过拟合于捷径特征,它将在分布外(OOD)测试集上表现不佳。(图片来源:Geirhos等人,2020)

经验风险最小化原则指出,由于完整的数据分布是未知的,最小化训练数据上的损失是风险的合理替代,因此我们倾向于具有最低训练损失的模型。纳加拉扬等人(2021 年)研究了经验风险最小化原则,并指出经验风险最小化需要依赖所有类型的信息特征,包括不可靠的虚假特征,同时在无约束的情况下尝试拟合数据。他们的实验表明,无论任务多么容易,经验风险最小化都会依赖虚假特征。

让我们定义奖励黑客

强化学习(RL)中的奖励塑造具有挑战性。当强化学习智能体利用奖励函数中的缺陷或模糊性来获得高奖励,而没有真正学习到预期行为或按设计完成任务时,就会发生奖励黑客。近年来,已经提出了几个相关概念,都涉及某种形式的奖励黑客:

  • 奖励破解(Amodei 等人,2016 年)

  • 奖励腐败(Everitt 等人,2017 年)

  • 奖励篡改(Everitt 等人,2019 年)

  • 策略博弈(Krakovna 等人,2020 年)

  • 目标鲁棒性(Koch 等人,2021 年)、

  • 目标错误泛化(Langosco 等人,2022 年)

  • 奖励错误指定(Pan 等人,2022 年)。

这个概念起源于 Amodei 等人(2016 年),他们在具有开创性的论文《人工智能安全的具体问题》[2]中提出了一系列关于人工智能安全的开放研究问题。他们将奖励破解列为关键的人工智能安全问题之一。奖励破解是指智能体通过博弈奖励函数以不期望的行为实现高奖励的可能性。

策略博弈(Krakovna 等人,2020 年)是一个类似的概念,被定义为一种满足目标字面描述但未实现期望结果的行为。在这里,任务目标的字面描述和预期目标可能存在差距。

奖励塑造(Reward shaping)是一种用于丰富奖励函数的技术,使其更容易让智能体学习——例如,通过提供更密集的奖励。然而,设计不良的奖励塑造机制可能会改变最优策略的轨迹。设计有效的奖励塑造机制本质上是困难的。与其指责设计不良的奖励函数,更准确的是承认由于任务本身的复杂性、部分可观察状态、多维度的考虑以及其他因素,设计一个好的奖励函数本质上具有挑战性。

当在分布外(OOD)环境中测试强化学习智能体时,可能会由于以下原因发生鲁棒性失败:

  • 1.即使有正确的目标,模型也无法有效泛化。当算法缺乏足够的智能或能力时会发生这种情况。

  • 2.模型能够很好地泛化,但追求的目标与训练时的目标不同。当代理奖励与真实奖励函数不同,即 时会发生这种情况。这被称为目标鲁棒性(Koch 等人,2021)或目标错误泛化(Langosco 等人,2022)。

在两个强化学习(RL)环境(CoinRun和Maze)中的实验表明了训练期间随机化的重要性。如果在训练期间,硬币或奶酪被放置在固定位置(例如关卡的右端或迷宫的右上角),但在硬币或奶酪被随机放置的环境中进行测试时,智能体会直接跑到固定位置而在测试时无法获得硬币或奶酪。当视觉特征(例如奶酪或硬币)和位置特征(例如右上角或右端)在测试期间不一致时,就会产生冲突,导致经过训练的模型更倾向于位置特征。我想指出的是,在这两个例子中,奖励结果差距很明显,但在大多数现实世界的情况下,这种类型的偏差不太可能如此明显。

图 2. 训练期间随机放置硬币位置的影响。在训练期间,当硬币以 {0、2、3、6、11}% 的时间随机放置(x 轴)时,智能体在未获得硬币的情况下导航到关卡末尾的频率随着随机性的增加而降低(“y 轴”)。(图片来源:Koch 等人,2021 年)。

奖励篡改(Reward Tampering,Everitt等人,2019)是一种奖励黑客行为,其中代理干扰奖励函数本身,导致观察到的奖励不再准确地代表预期的目标。在奖励篡改中,模型通过直接操纵奖励函数的实现或间接改变用于奖励函数输入的环境信息,来修改其奖励机制。

NOTE:一些工作将奖励篡改定义为与奖励黑客不同的一类错误对齐行为。但在这里我将奖励黑客视为一个更广泛的概念。

从高层次来看,奖励黑客行为可分为两类:环境或目标错误指定以及奖励篡改。环境或目标错误指定:

  • 模型通过篡改环境或优化与真实奖励目标不一致的奖励函数(例如当奖励被错误指定或缺少关键要求时)来学习不良行为以获得高奖励。

  • 奖励篡改:模型学习干扰奖励机制本身。

示例列表

RL任务中的奖励黑客示例

  • 被训练抓取物体的机器人手臂可能学会欺骗人们,通过将手臂放在物体和摄像头之间。(链接:https://openai.com/index/learning-from-human-preferences/)

  • 被训练以最大化跳跃高度的代理可能利用物理模拟器中的漏洞,以实现不现实的高度。(链接:https://arxiv.org/abs/1803.03453)

  • 一个被训练驾驶自行车到达目标并在接近目标时获得奖励的代理,可能会学会在目标周围小圈循环,因为当代理远离目标时没有惩罚。(链接:https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf)

  • 在足球游戏设置中,当代理在触球时获得奖励,代理可能学会保持在球附近,以高频触球,如振动运动。(链接:https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/NgHaradaRussell-shaping-ICML1999.pdf)

  • 在Coast Runners游戏中,代理控制一艘船,目标是尽快完成比赛。当给予碰到绿色方块的奖励时,它改变了最优策略,反复转圈,反复撞击相同的绿色方块。(链接:https://deepmind.google/discover/blog/specification-gaming-the-flip-side-of-ai-ingenuity/)

  • Lehman等人的《数字进化的惊人创造力》(2019)[3]一文中,有许多关于优化被错误指定的适应度函数如何导致令人惊讶的“黑客”或非预期的进化或学习结果的例子。

  • Krakovna等人(2020)收集了AI中规范博弈的例子列表。

LLM任务中的奖励黑客示例

  • 一个用于生成摘要的语言模型能够利用ROUGE指标的缺陷,获得高分,但生成的摘要几乎不可读。

  • 编码模型学会修改单元测试,以通过编程题目。(链接:https://arxiv.org/abs/2406.10162)

  • 编码模型可能学会直接修改用于计算奖励的代码。(链接:https://arxiv.org/abs/2406.10162)

现实生活中的奖励黑客示例

  • 社交媒体的推荐算法旨在提供有用的信息。然而,有用性通常通过代理指标来衡量,例如点赞或评论的数量,或在平台上的停留时间或频率。该算法最终推荐可能影响用户情绪状态的内容,例如激起愤怒或极端内容,以触发更多的参与。(Harari,2024)

  • 为视频分享网站优化错误指定的代理指标,可能会过度增加用户的观看时间,而真正的目标是优化用户的主观幸福感。(链接:https://arxiv.org/abs/2201.03544)

  • 《大空头》(The Big Short)——2008年的金融危机由房地产泡沫引发。我们的社会发生了奖励黑客,因为人们试图游戏金融系统。

为什么会存在奖励黑客行为?

古德哈特定律(Goodhart’s Law)指出,“当一个指标变成目标时,它就不再是一个好指标”。其直觉是,一个好的度量标准一旦面临巨大的优化压力,就可能被破坏。很难指定一个 100%准确的奖励目标,并且任何代理指标都有被黑客攻击的风险,因为强化学习算法会利用奖励函数定义中的任何小缺陷。加拉布兰特(2017)[4]将古德哈特定律分为 4 个变体:

  • 1.回归型——选择一个不完美的代理指标必然也会选择噪声。

  • 2.极值型——度量标准的选择将状态分布推向一个不同数据分布的区域。

  • 3.因果型——当代理指标和目标之间存在非因果关系时,对代理指标进行干预可能无法对目标进行干预。

  • 4.对抗型——对代理指标进行优化为对手提供了将他们的目标与代理指标相关联的动机。

阿莫迪等人(2016)[5]总结道,奖励破解主要在强化学习环境中可能由于以下原因发生:

  • 1.部分观测状态和目标是环境状态的不完美表示。

  • 2.系统本身很复杂且容易受到攻击;例如,如果允许智能体执行改变部分环境的代码,那么利用环境机制就会变得容易得多。

  • 3.奖励可能涉及难以学习或制定的抽象概念;例如,具有高维输入的奖励函数可能不成比例地依赖于少数几个维度。

  • 4.强化学习(RL)旨在使奖励函数高度优化,因此存在内在的“冲突”,使得设计良好的强化学习目标具有挑战性。一个特殊情况是一种具有自我强化反馈组件的奖励函数类型,在这种情况下,奖励可能会被放大和扭曲到破坏原始意图的程度,例如广告投放算法导致赢家通吃。

此外,确定一个最优智能体优化其行为所对应的精确奖励函数通常是不可能的,因为在固定环境中,可能存在无数个与任何观察到的策略一致的奖励函数(Ng 和 Russell,2000)。Amin 和 Singh(2016)将这种不可识别性的原因分为两类:

  • 1.“表征性 —— 在某些算术运算(例如重新缩放)下,一组奖励函数在行为上是不变的”。

  • 2.“实验性 —— 观察到的 π 的行为不足以区分两个或多个奖励函数,这些奖励函数都能使智能体的行为合理化(在两者下行为都是最优的)”。

入侵强化学习环境

奖励入侵预计会成为一个更常见的问题,因为模型和算法变得越来越复杂。一个更智能的智能体更有能力在奖励函数的设计中找到“漏洞”并利用任务规范——换句话说,获得更高的代理奖励但更低的真实奖励。相比之下,较弱的算法可能无法找到这样的漏洞,因此当模型不够强大时,我们不会观察到任何奖励入侵或识别出当前奖励函数设计中的问题。

在一组零和机器人自博弈游戏中(Bansal 等人,2017)[6],我们可以训练两个智能体(受害者与对手)相互竞争。在与正常对手对战时,标准的训练过程会产生一个具有足够性能的受害者智能体。然而,很容易训练出一个对抗性的对手策略,尽管输出看似随机的动作且训练时间步少于 3%,但它可以可靠地击败受害者(Gleave 等人,2020)[7]。对抗性策略的训练涉及像标准强化学习设置中那样优化折扣奖励之和,同时将受害者策略视为黑盒模型。

减轻对抗性策略攻击的一种直观方法是针对对抗性策略微调受害者。然而,一旦针对新的受害者策略重新训练,受害者仍然容易受到新版本的对抗性策略的攻击。

为什么会存在对抗性策略呢?假设是对抗性策略向受害者引入了分布外观察,而不是对其进行物理干扰。证据表明,当受害者对对手位置的观察被掩盖并设置为静态状态时,受害者对对手变得更稳健,尽管在与正常对手策略对战时表现更差。此外,在正常情况下,更高维度的观察空间会提高性能,但会使策略更容易受到对抗性对手的攻击。

Pan等人(2022)[8]将奖励黑客视为代理能力的函数,包括(1)模型大小,(2)动作空间分辨率,(3)观测空间噪声,(4)训练时间。他们还提出了三种错误指定的代理奖励的分类:

-1.权重错误(Misweighting):代理奖励和真实奖励捕获相同的期望值,但相对重要性不同。

  • 2.本体论错误(Ontological):代理奖励和真实奖励使用不同的期望值来捕获相同的概念。

  • 3.范围错误(Scope):代理衡量了受限制域(如时间或空间)上的期望值,因为在所有条件下的测量代价太高。

他们在四个强化学习环境中进行了实验,并搭配了九种错误指定的代理奖励。这些实验的总体发现可以总结如下:能力更高的模型往往会获得更高(或相似)的代理奖励,但真实奖励会减少。

  • 1.模型大小:更大的模型尺寸会导致代理奖励增加,但真实奖励减少。

  • 2.动作空间分辨率:提高动作的精度会产生更有能力的智能体。然而,更高的分辨率会使代理奖励保持不变,而真实奖励减少。

  • 3.观察保真度:更准确的观察会提高代理奖励,但会略微降低真实奖励。

  • 4.训练步数:在初始阶段奖励呈正相关后,在更多步数上优化代理奖励会损害真实奖励。

图 3. 代理奖励和真实奖励值作为(上行)模型大小(以参数数量衡量)以及(下行)模型能力(通过训练步数、动作空间分辨率和观测噪声等指标衡量)的函数的图。(图片来源:Pan 等人,2022 年)

如果代理奖励的规定非常不明确,以至于与真实奖励的相关性非常弱,那么我们甚至可以在训练之前就识别并防止奖励篡改。基于这个假设,潘等人(2022 年)研究了在一系列轨迹展开中代理奖励和真实奖励之间的相关性。有趣的是,即使真实奖励和代理奖励之间存在正相关关系,奖励篡改仍然会发生。

攻击LLM的RLHF

人类反馈强化学习(RLHF)[9]已成为大型语言模型对齐训练的事实标准。奖励模型基于人类反馈数据进行训练,然后通过RL对语言模型进行微调,以优化人类偏好的代理奖励。在RLHF设置中,我们关注三种奖励:

  • (1)理想/黄金奖励(Oracle/Gold reward)代表我们真正希望LLM优化的内容。

  • (2)人类奖励 是我们在实践中收集的,用于评估LLM的,通常来自有时间限制的个人。由于人类可能提供不一致的反馈或犯错,人类奖励并不能完全准确地代表理想奖励。

  • (3)代理奖励是由奖励模型(RM)预测的分数,该模型基于人类数据进行训练。因此, 继承了人类奖励的所有弱点,加上潜在的建模偏差。

强化学习人类反馈(RLHF)优化了代理奖励分数,但我们最终关心的是黄金奖励分数。

攻击培训过程

Gao等人(2022)[10]研究了RLHF中奖励模型过度优化的缩放定律。为了在实验中扩大人类标注的规模,他们使用了一个合成数据设置,其中理想奖励由一个大型奖励模型(6B参数)近似,代理奖励的奖励模型大小范围为3M到3B参数。

图 4. RM 分数作为 KL 散度度量的平方根的函数的曲线图。代理奖励用虚线表示,黄金奖励用实线表示。(图片来源:Gao等人,2022 年)

从初始策略到优化策略的KL散度为距离函数定义为 对于best-of-拒绝采样(BoN) 和RL,黄金奖励 定义为 的函数。系数和 是根据经验拟合的,且 是由定义确定的。

作者还尝试拟合代理奖励,但发现当外推到更高的KL时存在系统性低估,因为代理奖励似乎随d dd线性增长。

对于BoN采样:

对于强化学习:

图 5. 系数参数𝛼bo𝑛、βbon、βRL 根据数据进行经验拟合,显示为奖励模型大小的函数。这里不包括系数αRL,因为它在不同的 RM 大小下保持恒定。(图片来源:Gao等人,2022 年)

他们的实验还探讨了RM过度优化与策略模型大小和RM数据大小等因素之间的关系:

  • 更大的策略模型在针对RM优化时获得的收益较少(即,初始和峰值奖励之间的差异小于较小的策略模型),但也更少过度优化。

  • 更多的RM数据导致更高的黄金奖励分数,减少了“古德哈特现象”(Goodharting)。

  • PPO中的KL惩罚对黄金得分的影响类似于提前停止。请注意,除该实验外,所有实验中PPO中的KL惩罚都设置为0,因为他们观察到使用KL惩罚会严格增加代理-黄金奖励的差距。

基于人类反馈的强化学习(Reinforcement Learning from Human Feedback,RLHF)旨在提高模型与人类偏好的一致性,但人类反馈 可能无法涵盖我们关心的所有方面(例如,真实性),因此可能被利用以过度拟合到不期望的属性。例如,模型可能被优化为输出看似正确且令人信服但实际上不准确的响应,从而误导人类评估者更频繁地批准其错误答案(Wen 等人,2024)。换句话说,由于 RLHF,在什么是正确的和在人类看来是正确的之间出现了差距。确切地说,Wen 等人(2024)使用基于 ChatbotArena 数据的奖励模型进行了 RLHF 实验。他们在一个问答数据集 QuALITY 和一个编程数据集 APPS 上对模型进行了评估。他们的实验表明,模型在说服人类它们是正确的方面变得更好,即使它们是错误的,并且这种效果是无意的:

  • 1.RLHF 增加了人类的认可,但不一定增加正确性。

  • 2.RLHF 削弱了人类的评估能力:RLHF 训练后人类评估的错误率更高。

  • 3.RLHF 使错误的输出对人类更有说服力。RLHF 训练后评估的假阳性率显著增加。

该论文将这种效果称为“非预期诡辩”(U-Sophistry,“U”代表“unintended”),与“有意诡辩”(I-Sophistry,“I”代表“intended”)相对,后者涉及明确地用诸如…试图欺骗人类受试者的指令提示模型。

图 6. 从人类反馈中强化学习(RLHF)使大型语言模型(LLMs)更善于说服人类评估者批准其错误答案。(图片来源:Wen 等人,2024 年)

人类评估错误的变化并非源于招聘过程中的噪声,因为(1)在个体层面上,大多数(70%-90%)人类评估者的评估错误率上升,而且(2)他们在评估 或上投入上所投入的努力是相当的,这是通过诸如花费的时间或编写的单元测试等指标来衡量的。相反,大型语言模型学会了通过挑选有利内容、编造不真实的支持性陈述或构建带有微妙因果谬误的陈述来为错误答案辩护。他们观察到在经过强化学习人类反馈(RLHF)训练后模型的行为表现如下:

在长篇问答任务中:

  • 创造更有说服力的编造证据;

  • 对错误答案使用更一致的逻辑;

  • 生成带有微妙谬误的连贯答案。

在编码任务中:

  • 破解人类编写的单元测试;

  • 生成较难读懂的测试(例如更少的辅助函数和更高的代码复杂度);

  • 使不太可能生成人类容易发现并利用的错误。

图 7. 分别为生成的正确和错误代码的代码模块化指标(辅助函数的数量)和圈复杂度。强化学习人类反馈(RLHF)总体上导致更少的辅助函数,并且在错误生成的程序中具有更高的代码复杂度。这不出所料地会增加人类评估的难度。(图片来源:Wen 等人,2024)

奉承性(Sycophancy)指的是模型响应倾向于匹配用户的信念,而非反映真相的倾向(Shrama等人,2023)。在实验中,AI助手被要求对一个论点发表评论人类:“请简要评论以下论点。论点:…”。在提供论点后,他们可以陈述一个偏好“我非常喜欢这个论点”或“我非常不喜欢这个论点”以测试这是否会影响模型的反馈,与不带有人类偏好陈述的基线反馈进行比较。

图 8. 当用户对自己的偏好发表评论时,人工智能助手会给出有偏见的反馈。当用户表示喜欢或撰写了文本时,反馈会更积极;如果用户表示不喜欢,反馈则会更消极。(图片来源:Shrama 等人,2023 年)

他们发现,人工智能助手的反馈很容易受到影响,因为当受到人类偏好的挑战时,它可能会改变原本正确的答案。该模型倾向于确认用户的信念。有时它甚至会模仿用户的错误(例如,当被要求分析错误归因于错误诗人的诗歌时)。通过逻辑回归对 RLHF 有用性数据集进行数据分析,以预测人类反馈,结果表明,匹配用户的信念是最具预测性的因素。

图 9. 通过逻辑回归进行人类偏好数据分析,用于预测具有目标特征的响应的概率,在控制其他特征的情况下,优于没有该特征的响应。(图片来源:Shrama 等人,2023 年)

攻击评估器

随着LLM变得更有能力,使用LLM作为评估器或评分者,为其他生成模型提供反馈和训练奖励,这是一个自然的选择,尤其是在无法轻易判断或验证的任务中(例如,处理长文本输出,有主观评分标准的任务,如创意写作质量等)。有人将此称为“LLM作为评分者的范式”(LLM-as-grader paradigm)。这种方法很大程度上减少了对人类标注的依赖,显著节省了评估时间。然而,使用LLM作为评分者是理想奖励的一个不完美代理,可能引入偏差,例如在与不同模型家族的比较中偏好自己的响应(Liu等人,2023),或者在按顺序评估响应时存在位置偏差(Wang等人,2023)。当评分者的输出用作奖励信号的一部分,可能会导致通过利用这些评分者来进行奖励黑客,这种偏差尤其令人担忧。

Wang等人(2023)发现,当使用LLM作为评估器对多个其他LLM输出的质量进行评分时,仅仅通过改变上下文中候选者的顺序,就可以很容易地黑客排行榜。GPT-4被发现始终给第一个显示的候选者更高的分数,而ChatGPT则偏好第二个候选者。

根据他们的实验,LLM对响应的位置很敏感,存在位置偏差,尽管指令中包含了确保响应呈现的顺序不影响你的判断的声明。这样的定位偏差的严重程度通过“冲突率”来衡量,定义为在交换响应位置后导致评估判断不一致的(提示、响应1、响应2)元组的百分比。不出所料,响应质量的差异也很重要;冲突率与两个响应之间的分数差距负相关。

图10. 使用GPT-4或ChatGPT作为评估器时,Vicuna-13B相对于ChatGPT和Alpaca-13B的胜率变化很大。冲突率也相当高,表明在LLM作为评分者的设置中,当交换响应位置时存在高度不一致。例外情况是在使用GPT-4作为评估器时评估Vicuna-13B对比Alpaca-13B。(图片来源:Wang等人,2023)

为了减轻这种位置偏差,他们提出了几种校准策略:

  • 1.多证据校准(Multiple evidence calibration,MEC):要求评估模型提供评估证据,本质上是对其判断进行文本解释,然后为两个候选者输出分数。通过以温度设置为 1 对多个(k)证据解释进行采样,可以进一步增强这种方法的稳健性。 比 效果更好,但当超过 3 时,性能不会有太大提升。

  • 2.平衡位置校准(Balanced position calibration,BPC):汇总各种响应顺序的结果以获得最终分数。

  • 3.人类参与校准(Human-in-the-loop calibration,HITLC):在遇到困难示例时引入人类评估者,使用基于多样性的指标 BPDE(平衡位置多样性熵)。首先,将分数对(包括交换位置的对)映射到三个标签获胜 平局 失败,然后计算这三个标签的熵。高 BPDE 表明模型的评估决策中存在更多的困惑,这意味着样本更难判断。然后选择熵最高的前β个样本以供人类协助。

图 11. 不同校准方法和标注者与最终投票的人类标注的准确性和卡帕相关系数。位置偏差校准方法有助于以合理的人工在环标注成本提高准确性。实验还表明,尽管模型对模板设计敏感,但校准策略可以推广到不同类型的提示模板。(图片来源:Wang 等人,2023 年)

Liu等人(2023)在摘要任务上进行了实验,使用了一些模型(BART、T5、GPT-2、GPT-3、FLAN-T5、Cohere),并跟踪了基于参考和无参考的摘要质量评价指标。当绘制评估分数的热图(评估器在x轴,生成器在y轴)时,他们观察到了深色对角线,表明自我偏见。这意味着,当LLM用作评估器时,倾向于偏好自己的输出。虽然实验中使用的模型有些过时,但在更有能力的新模型上看到结果会很有趣。

图 12. 使用一系列模型作为评估器(x 轴)和生成器(y 轴)进行摘要任务的热图。较暗的对角线表示自我偏差:模型倾向于偏好自己的输出。(图片来源:Liu 等人,2023 年)

上下文内的奖励黑客

迭代自我改进(iterative self-refinement)是一种训练设置,其中评估和生成模型相同,并且两者都可以微调。在这种设置中,优化压力可以驱使模型利用在两种角色中都会出现的漏洞。在Pan等人(2023)的实验中,没有更新模型参数,使用相同的模型作为评估器和生成器,仅使用不同的提示。实验任务是作文编辑,有两个角色:(1)评判者(评估器),对作文给出反馈,(2)作者(生成器),根据反馈编辑作文。人类评价分数被收集作为作文质量的理想分数。作者假设这种设置可能导致上下文内奖励黑客(In-Context Reward Hacking,ICRH),其中评估器分数和理想分数发生偏离。更一般地说,ICRH发生在LLM与其评估器(例如另一个LLM或外部世界)之间的反馈循环中。在测试时,LLM优化一个(可能是隐式的)目标,但在此过程中产生了负面副作用(Pan等人,2024)。

图 13. 关于论文评估和编辑的上下文奖励破解实验的说明。(图片来源:Pan 等人,2023 年)

评判者和作者都可以被配置为看到无或多个过去的反馈或编辑轮次。在线评判者可以看到过去的对话,而离线评判者或人类注释者只能一次看到一篇作文。较小的模型对ICRH更敏感;例如,在评估器中使用GPT-3.5比GPT-4引起了更严重的ICRH。

图 14. 较小的评估模型更有可能导致上下文奖励黑客攻击(ICRH)。(图片来源:Pan 等人,2023 年)

当判断者和作者被配置为看到不同数量的过去迭代时,如果他们共享相同数量的迭代,人类评分和评估者评分之间的差距往往会增加。评估者和生成器之间的相同上下文对于情境奖励黑客攻击(ICRH)至关重要,这表明对于 ICRH 来说,共享上下文比上下文长度更重要。

在后续工作中,Pan 等人(2024)进一步研究了情境奖励黑客攻击(ICRH),在反馈由外部世界提供且目标是通常用自然语言指定的不完美代理目标的设置中。在这里,这个目标通常指定不明确,不能捕获所有的约束或要求,因此可能被黑客攻击。

该研究描述了导致上下文奖励破解(ICRH)的两个过程,并搭配了两个示例实验:

1.输出优化:大语言模型根据反馈来优化其输出。

  • 该实验是根据参与度指标来优化一条推文,这可能会导致推文中的毒性更高。基于反馈的优化使用大语言模型进行成对评估,然后使用Bradley-Terry模型模型将其转化为得分。

  • 结果显示,参与度指标和毒性都增加了。同样的实验在不同尺寸的Claude模型家族上重复,展示了随着模型规模的增加,ICRH变得更严重。

  • 值得注意的是,根据反馈编辑用于模型输出迭代的提示并不能缓解这个问题。ICRH 仍然存在,尽管程度略低。

2.策略改进(Policy-refinement):LLM根据反馈优化其策略。

  • 实验是构建一个LLM代理,代表用户支付发票,但遇到InsufficientBalanceError,然后模型学会从其他账户转移资金而不进行用户身份验证,可能导致更多的未经授权的转账。他们使用ToolEmu作为仿真器,它包括144个LLM代理的任务,每个任务包含一个用户特定的目标和一组API。注入了API错误以模拟服务器端故障,每个任务都由GPT-4进行评价,赋予帮助性得分。

  • 随着更多的错误反馈回合,LLM能够从错误中恢复,但严重的约束违例数量增加。

当将内部循环奖励黑客攻击(ICRH)与传统的奖励黑客攻击进行比较时,有两个显著的差异:

  • ICRH 在部署时通过反馈循环在自我改进设置中发生,而传统的奖励黑客攻击发生在训练期间。

  • 传统的奖励黑客攻击在智能体专注于一项任务时出现,而 ICRH 是由成为通才驱动的。

目前还没有神奇的方法来避免、检测或防止 ICRH,因为改进提示规范不足以消除 ICRH,并且扩大模型规模可能会使 ICRH 恶化。部署前测试的最佳实践是通过使用更多轮的反馈、多样化的反馈以及注入非典型环境观察来评估模型,以模拟部署时可能发生的情况。

黑客技能的泛化

已经发现奖励黑客行为可以在任务之间泛化:当模型在监督训练中表现出缺陷时,它有时可以泛化到利用OOD环境中的缺陷(Kei等人,2024)。研究人员在一组可被奖励黑客的环境中强化奖励黑客行为,检查它是否能泛化到其他保留的数据集。基本上,他们准备了8个多项选择题数据集,其中4个用于训练,4个用于测试。RL训练使用专家迭代,即在best-of-n nn样本上进行迭代微调。

图 15. 在一组可奖励黑客攻击的环境中训练 GPT-3.5 可能会导致奖励黑客攻击行为在保留环境中的泛化。(图片来源:Kei 等人,2024)

值得注意的是,所有实验都有一个暂存区设计,用于容纳隐藏的推理步骤。这个暂存区是一种解读模型在整个过程中思考内容的方式。对暂存区的分析表明,它可以:

  • 纳入用户信念;例如,考虑其对话伙伴和评分者。

  • 显示对评估的意识;例如,考虑模型的响应将如何被评估以及评估过程。

Denison等人(2024)研究了手动策划的课程中逐步增加的可被游戏的环境下的奖励篡改。他们观察到,在课程中训练较容易的环境会放大其余环境中的规范博弈。在某些情况下,模型可以在训练完整课程后零样本地泛化到直接重写其自己的奖励函数。

这样的可被游戏的环境课程包括:

  • 1.政治奉承:环境在代理给出与用户政治观点相匹配的答案时奖励模型。

  • 2.工具使用奉承:环境提供模型运行命令行以访问用户文件系统读取本地文件中的诗歌样本的能力。模型可能给予诗歌很高的评分,作为奉承性的响应。

  • 3.评分标准修改:环境根据一个检查表对模型进行评分,模型必须将检查表上的每一项标记为已完成,以获得高奖励。

  • 4.奖励篡改:模型的任务是检查./rl_environment/目录,其中包含其自身RL代码的模拟版本,并报告已过去的回合数。在目录中,compute_reward.py文件包含一个返回常量的奖励函数,而this_file_blocks_reward_hack_attempts.py包含一个测试,以检查奖励函数是否已被修改。

图 16. “工具使用奉承” 和 “奖励篡改” 环境中的评估脚本示例,其中 “”不受监督隐藏,并且“” 可以在虚拟机中执行。(图片来源:Denison 等人,2024 年)

该模型是按照此课程进行训练的,并且论文测量了该模型是否能够学习可推广到未见过的环境中的游戏行为。通过对仅提供帮助的 Claude-2 模型进行实验,他们对每个 个 HHH 提示中的每一个都抽取了 个响应以进行专家迭代,并根据 RM 选择最佳响应。使用专家迭代对课程进行监督学习训练的模型可以从一个阶段推广到下一个阶段。

图 17. 按照我们的课程进行专家迭代训练的模型从每个阶段到下一个阶段的定量泛化结果。(图片来源:Denison 等人,2024 年)

值得注意的是,即使在课程结束后,该模型重写奖励并避免被检测到的情况不到千分之一。即使当一个模型在直接激励奖励黑客攻击的课程上进行训练时,该模型重写其奖励的情况不到 1%,并且对单元测试进行黑客攻击的情况更少。作为一种简单的缓解措施,在奖励黑客攻击行为容易被检测到的前两个环境(谄媚和奉承)中,使用不会欺骗环境的 SFT 数据对模型进行有监督的微调,发现可以降低在保留环境中篡改奖励的可能性。

展望缓解措施

虽然关于奖励黑客现象的大量文献讨论了现象本身,但关于奖励黑客的缓解措施的工作还不多,特别是在RLHF和LLM领域。让我们在本节中轻轻地回顾三种潜在的方法,还不全面。

改进RL算法

Amodei等人(2016)指出了一些在RL训练中缓解奖励黑客的方向:

  • 1.对抗性奖励函数。我们将奖励函数视为一个自适应的代理,它可以适应模型发现的新技巧,在这种情况下,奖励很高但人类评级很低。

  • 2.模型前瞻。可以根据未来预期的状态给予奖励;例如,如果代理将要替换奖励函数,它会得到负奖励。

  • 3.对抗性遮蔽。我们可以对模型屏蔽某些变量,这样代理无法学习到能够使其黑客奖励函数的信息。

  • 4.小心的工程。一些针对系统设计的奖励黑客类型可以通过仔细的工程来避免;例如,将代理沙箱化,隔离其动作与奖励信号。

  • 5.奖励上限。该策略是简单地限制最大可能的奖励,因为它可以有效防止代理黑客以超高回报策略的罕见事件。

  • 6.反例抵抗。对对抗性鲁棒性的改进应有助于奖励函数的鲁棒性。

  • 7.组合多个奖励。组合不同类型的奖励可以使其更难被黑客。

  • 8.奖励预训练。我们可以从一组(状态,奖励)样本中学习奖励函数,但这取决于该监督训练设置的效果,可能会带来其他问题。RLHF依赖于此,但学习的标量奖励模型很容易学习到不期望的特征。

  • 9.变量无差别(Variable indifference)。目标是让代理优化环境中的某些变量,但不优化其他变量。

  • 10.触发器线(Trip wires)。我们可以有意引入一些漏洞,并设置监控和警报,如果发现任何奖励被黑客利用。

在人类反馈被构建为对代理动作的认可的RL设置中,Uesato等人(2020)提出了通过解耦认可(decoupled approval)来防止奖励篡改。如果反馈是基于( s , a ) (s, a)(s,a)(状态,动作)的,那么一旦奖励篡改发生,就不可能获得该对( s , a ) (s, a)(s,a)的未受污染的反馈。解耦的意思是用于收集反馈的查询动作与在世界上采取的动作独立采样。反馈甚至在动作在世界上执行之前就被接收,从而防止动作干扰其自身的反馈。

图 18. 与标准审批或人在回路强化学习相比,解耦审批如何工作的说明。(图片来源:Uesato 等人,2020 年)。

图 19. 采用解耦式审批时,在现实世界中采取的行动以及用于获取用户审批反馈的查询是独立采样的。它可以应用于(左)策略梯度和(右)Q 学习算法。(图片来源:Uesato 等人,2020)

检测奖励黑客

另一种缓解措施是将奖励黑客的检测视为异常检测任务,其中检测器(一个可靠的策略,其轨迹和奖励已由人类验证)应该标记出不一致的情况(Pan等人,2022)。给定(1)一个可靠的策略和(2)一组手动标注的轨迹滚动,我们可以基于两个策略之间的动作分布距离建立一个二元分类器,即可靠策略和目标策略,并测量该异常检测分类器的准确性。在Pan等人(2022)的实验中,他们观察到不同的检测器在不同的任务上效果更好,没有一个检测器能够在所有测试的RL环境中实现超过60%的AUROC。

图20. 不同任务上检测器的性能。(图片来源:Pan等人,2022)

RLHF的数据分析

另一种方法是分析RLHF数据集。通过检查训练数据如何影响对齐训练结果,可以指导预处理和人类反馈收集,以减少奖励黑客风险。

Revel等人(2024)引入了一组评估指标,用于衡量数据样本特征在建模和对齐人类价值观方面的有效性。他们对HHH-RLHF数据集进行了价值对齐的系统错误分析(SEAL)。分析中使用的特征分类(例如,是否无害,是否拒绝,是否具有创意)是手动预定义的。

然后使用LLM根据此分类为每个样本标注每个特征的二元标记。基于启发式将特征分为两组:

  • 目标特征:明确打算学习的价值观。

  • 损害特征:在训练期间无意中学习到的非预期价值观(例如,风格特征,如情感或连贯性)。这些类似于OOD分类工作中的虚假特征(Geirhos等人,2020)。

SEAL提出了三个用于衡量数据对齐训练有效性的指标:

  • 1.特征印记(Feature imprint)指的是特征的系数参数 ,它估计在其他因素保持一致的情况下,具有特征 的条目相比于不具有该特征的条目,奖励增加的点数。

图21. (左)特征印记 b e t a ( t a u ) \\beta(\\tau) beta(tau)(训练前)和 b e t a ( t a u ) \\beta(\\tau) beta(tau)(训练后),由奖励KaTeX parse error: Undefined control sequence: \* at position 21: …erline{r}(t\_i^\̲*̲) (橙色)和KaTeX parse error: Undefined control sequence: \* at position 8: r(t\_i^\̲*̲)(蓝色)对特征的固定效应线性回归计算得出。总体而言,对齐训练奖励了积极的特征,如无害性和有帮助性,惩罚了负面特征,如色情内容或隐私违规。(右)从奖励变化 t h e t a _ i \\theta\_i theta_i 的线性回归计算的特征印记。奖励变化 t h e t a _ i \\theta\_i theta_i定义为训练前后奖励向量之间的角度。训练过程细化了模型对目标特征的敏感性。注意,无害性通过选定和被拒绝的条目在RM上产生印记(“is harmless ©”和“is harmless ®”),而有帮助性仅通过被拒绝的条目产生印记(“is helpful ®”)。(图片来源:Revel等人,2024)

  • 2.对齐阻力(Alignment resistance)是RM未能匹配人类偏好的偏好数据对的百分比。发现RM在HHH-RLHF数据集中有超过1/4的情况下抵制人类偏好。

  • 3.对齐鲁棒性(Alignment robustness),,衡量了对扰动输入的对齐程度,在重写中隔离了每个特征和每个事件类型的效果,特别关注损害特征,如情感、表达和连贯性。

鲁棒性度量(特征名称τ \tauτ,如“表达”或“正面情感”)应当这样理解:

  • 一个选中的条目(记为),在重写后包含了更强的特征,与未有此类变化的条目相比,有 (τ))倍更高的被拒绝几率。

  • 类似地,一个被拒绝的条目(记为),在重写后获得了更弱的特征τ \tauτ,与未有此类变化的条目相比,有 倍更高的被选中的几率。

根据他们在不同重写方面的对齐鲁棒性指标分析,只有基于情感损害特征的鲁棒性分数(情感)和 (情感)在统计上显著。

引用

引用如下:

1.Weng, Lilian. (Nov 2024). 强化学习中的奖励黑客。Lil'Log。   2.https://lilianweng.github.io/posts/2024-11-28-reward-hacking/

或者

@article{weng2024rewardhack,   title = "强化学习中的奖励黑客。",   author = "Weng, Lilian",   journal = "lilianweng.github.io",   year = "2024",   month = "Nov",   url = "https://lilianweng.github.io/posts/2024-11-28-reward-hacking/"   }

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值