PyCharm+Ollama+DeepSeek-Coder+CodeGPT构建本地大模型编程工具

1.PyCharm

Pycharm是用的比较多的Python编辑器,下载社区版安装即可。下载地址:https://www.jetbrains.com/zh-cn/pycharm/ 安装操作也比较简单不做多的说明。

2.Ollama

Ollama是一个专为在本地环境中运行和定制大型语言模型而设计的工具。它提供了一个简单而高效的接口,用于创建、运行和管理这些模型,同时还提供了一个丰富的预构建模型库,可以轻松集成到各种应用程序中。

下载地址:https://ollama.com/download

安装后,打开命令窗口,输入ollama就能看到命令集功能说明,这些命令就能帮我们管理好不同大模型,包括安装、运行大模型

#命令说明``ollama --version#显示当前安装的 ollama 版本。``ollama serve #启动服务,启动 ollama 服务,默认监听在 http://localhost:11434 地址。``ollama create <model_name> [-f <modelfile_path>]#创建模型``ollama show <model_name>#查看模型信息<model_name>: 要查询的模型名称。``ollama run <model_name>#运行指定的模型。<model_name>: 要运行的模型名称。``ollama stop <model_name>#停止正在运行的模型。<model_name>: 要停止的模型名称。``ollama pull <model_name>#从注册表中拉取指定的模型。<model_name>: 要拉取的模型名称。``ollama push <model_name>#将本地模型推送到注册表。<model_name>: 要推送的模型名称。``ollama list#列出所有已下载的模型。``ollama ps#列出所有正在运行的模型。``ollama cp <source_model> <destination_model>将一个模型复制到另一个新命名的模型。``ollama rm <model_name>#删除指定的模型。<model_name>: 要删除的模型名称。

3.DeepSeek-Coder

DeepSeek-Coder是一个由DeepSeek公司开发的代码语言模型,它基于大规模的代码和自然语言数据集进行训练。该模型支持项目级别的代码完成和填充任务,具有卓越的性能,在多种编程语言和多个基准测试中达到了开源代码模型的领先水平。

使用ollama安装DeepSeek-Coder

#拉取``ollama pull deepseek-coder``#运行``ollama run deepseek-coder``#默认接口地址为http://localhost:11434

4.CodeGPT

CodeGPT 是一种基于自然语言处理技术的人工智能工具,可以自动生成程序源代码。为了更方便程序员在开发环境中直接使用ChatGPT。

安装完成编辑器右侧就出现如下图:

配置codegpt,选择deepseek-coder为大模型

5.测试

配置完成后重启pycharm

如上图,完成所有配置,在开发项目过程中遇到问题即可使用

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 部署大型机器学习模型于PyCharm 对于在PyCharm中部署大型机器学习模型而言,重点在于创建一个有效的开发环境以及优化工作流程来支持复杂项目的构建与管理。利用Python的强大功能可以获取数据更多价值,通过建立实用的机器学习系统[^1]。 为了实现这一目标,在PyCharm内操作主要涉及几个方面: #### 创建虚拟环境 确保项目依赖项隔离至关重要。可以通过以下方式设置虚拟环境: ```bash python -m venv my_ml_project_env source my_ml_project_env/bin/activate # Linux/MacOS my_ml_project_env\Scripts\activate.bat # Windows ``` #### 安装必要的库 安装用于训练和保存模型所需的包,例如`scikit-learn`, `tensorflow`, 或者其他特定框架。 ```bash pip install scikit-learn tensorflow joblib ``` #### 训练并保存模型 编写脚本完成模型训练过程,并将其序列化以便后续加载使用。这里给出基于Scikit-Learn的一个简单例子: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier import joblib data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target) model = RandomForestClassifier(n_estimators=100).fit(X_train, y_train) joblib.dump(model, 'large_model.pkl') ``` #### 加载已训练好的大模型 当处理非常庞大的预训练模型文件时,可能需要考虑内存管理和磁盘I/O效率等问题。读取之前存储下来的模型实例可按如下方式进行: ```python loaded_model = joblib.load('path/to/large_model.pkl') predictions = loaded_model.predict(new_data) ``` 值得注意的是,如果计划将这些模型集成到数据库服务当中,则可以探索SQL Server中的Machine Learning Services特性,这允许远程执行R或Python代码并通过存储过程使它们易于访问[^3]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值