AI Agent概念系列:agent的行动模块

AI Agent(智能体)被设计为能够自主感知环境、规划决策并执行任务的系统。其中,Action模块(行动模块)是连接智能体内部决策与外部环境交互的关键桥梁。它负责将智能体的决策转化为具体的行动,使智能体能够有效地与外界互动。

Action模块的作用

Action模块是AI Agent架构中的核心组件之一。它的主要职责是将智能体的规划和决策转化为具体的操作,以实现预定的目标。这一过程类似于人类将大脑中的想法付诸实践,通过肢体动作与外界交互。

Action模块的核心要素
  1. 行动目标:指导智能体要达成的结果,例如完成特定任务、进行交流或探索环境。

  2. 行动生成:根据当前状态和目标,生成具体的行动计划。

  3. 行动空间:智能体可执行的所有可能动作的集合。

  4. 行动影响:评估所采取行动对环境和智能体自身的影响,以便进行反馈和调整。

Action模块的功能

在AI Agent的运行过程中,Action模块承担以下关键功能:

  • 任务分解:将复杂任务分解为一系列可执行的子任务。

  • 执行动作:根据规划模块的指令,执行具体的操作,如调用外部API、控制机器人执行物理动作等。

  • 反馈循环:监测行动结果,并根据反馈调整后续行动策略。

技术实现

在技术实现方面,Action模块通常涉及以下步骤:

  1. 输入处理:接收来自规划模块的指令,明确需要执行的任务和目标。

  2. 动作生成:根据当前环境状态和目标,生成具体的行动计划。这可能涉及路径规划、动作序列生成等。

  3. 动作执行:将生成的行动计划转化为具体的操作指令,控制智能体的执行器或调用外部服务。

  4. 结果评估:监测执行结果,与预期目标进行比较,评估行动的有效性。

  5. 反馈调整:根据评估结果,调整后续的行动策略,形成闭环的反馈控制系统。

应用场景

为了更直观地理解Action模块的作用,以下是几个实际应用场景:

智能客服系统:

当用户向智能客服询问账户余额时,智能体首先通过感知模块理解用户的意图,然后规划模块决定需要查询用户的账户信息。接着,Action模块执行具体的操作,如调用银行的API获取账户余额信息。获取到信息后,智能体通过反馈模块将结果传达给用户。

智能家居控制:

AI Agent可以管理智能家居设备,如调节温度、控制照明、管理安全系统等。用户通过语音或应用程序发出指令,Action模块将这些指令转化为具体的操作,与各个设备进行交互,实现家庭自动化。

金融交易助手:

在金融领域,AI Agent可用于自动化交易。Action模块根据预设的交易策略和实时市场数据,执行买卖指令,优化投资组合,帮助投资者实现更高效的交易。

医疗诊断支持:

AI Agent协助医疗专业人员进行诊断和治疗方案制定。Action模块可以处理患者数据,提供诊断建议,甚至在远程医疗中执行特定的医疗操作,如调整远程设备或发送处方。

自动驾驶:

在自动驾驶技术中,AI Agent的Action模块负责控制车辆的加速、制动和转向。它根据传感器数据和导航信息,执行驾驶操作,确保车辆安全高效地行驶。

客户服务聊天机器人:

AI Agent被广泛应用于客户服务领域。当用户提出问题时,Action模块检索相关信息,提供准确的回答,或执行特定操作,如更新账户信息或处理订单,提升客户体验。

工业自动化:

在制造业中,AI Agent的Action模块控制机器人和机械设备,执行组装、质量检测等任务。它根据生产计划和实时数据,优化生产流程,提高效率和精度。

Action模块的重要性

Action模块在AI Agent中扮演着至关重要的角色:

  • 实现决策的执行:将智能体的高层决策转化为具体的操作,使智能体能够实际影响环境。

  • 反馈机制的核心:通过执行行动并评估其结果,Action模块为智能体提供了必要的反馈信息,以便进行自我调整和学习。

  • 提升用户体验:通过有效的行动执行,智能体能够更好地满足用户需求,提供高质量的服务。

总结

Action模块是AI Agent架构中不可或缺的组成部分。它负责将智能体的规划和决策转化为具体的行动,使智能体能够有效地与外部环境交互。通过精确的行动执行和反馈机制,Action模块确保了智能体的自主性和适应性,为实现复杂任务提供了坚实的基础。

随着人工智能技术的不断发展,Action模块的设计和实现也在不断演进。未来,我们可以期待更智能、更高效的Action模块,推动AI Agent在各个领域的广泛应用。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值