2025中国金融大模型TOP20

img

2025年,中国金融行业正经历着由政策引导与技术革新共同驱动的深刻变革。国家金融监督管理总局、中国人民银行等部门密集出台《消费金融公司监管评级办法》《推动数字金融高质量发展的行动方案》等政策文件,构建起"安全稳妥有序推进"的监管框架。这些政策不仅明确了金融数字化从"立柱架梁"到"积厚成势"的转型路径,更将AI大模型应用提升至战略高度,要求金融机构在智能客服、风险管理、反欺诈等核心领域深化技术融合。

金融大模型的参数规模不断扩大,性能不断提升,多模态技术、AI 智能体等前沿技术在金融领域的应用逐渐增多,使得金融大模型能够处理更加复杂多样的金融数据和业务场景。其应用已广泛覆盖金融机构的多个业务领域,包括内部运营、信息处理和业务决策等。在内部运营方面,实现了文案生成、代码生成、翻译等通用类场景的智能化处理,提高了工作效率和质量。在信息和业务处理方面,能够进行智能化知识抽取、金融知识的理解和生成、政策研报解读等,为金融机构提供了更准确、更深入的市场和业务信息。在管理和业务决策方面,信贷审批、理财投顾等决策类场景的应用不断深化,帮助金融机构做出更科学、更精准的决策。典型案例印证了技术落地的深度:陆金所控股推出的"智盾"智能尽调系统,通过多模型串联机制实现材料分析准确率93%,照片识别准确率99%,使小微企业信贷审批周期从7天缩短至2小时。中信建投证券打造的金融产品学习平台,结合OCR多模态文档解析与ASR语音识别技术,将产品培训时间压缩80%,销售团队知识获取效率提升70%,直接推动金融产品销售业绩增长20%。

在风险控制领域,微众银行运用通义千问大模型进行信贷风控,不良贷款识别准确率提高28%;蚂蚁集团"仿金融专家多智能体协同推理"系统,在汽车分期业务中通过10余层推理环节,将用户需求识别精度提升至95%。这些实践表明,大模型正在重构金融风险管理的技术范式。

结语

未来,多模态融合技术预计使医疗诊断准确率提升25%、工业质检效率提高45%,金融领域或将实现文本-图像-语音的跨模态风险评估;开源生态蓬勃发展,中国主导15%的AI国际标准制定,为中小金融机构提供技术普惠路径;监管科技(RegTech)创新加速,大模型驱动的合规审查系统已实现99%的合规内容覆盖。挑战同样不容忽视:85%的企业数据未标准化,专业领域可用数据缺口达40%,数据治理成为制约因素;算法黑箱问题要求建立"感知-认知推理-决策"的全链路可解释性框架;人才结构性短缺迫使行业探索"业技融合"机制。这些挑战倒逼金融机构在技术创新与风险防控间寻求动态平衡。这场静默的革命,终将重塑金融服务的边界与内涵。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 大模型安全评测方法与工具 大模型的安全性评估是一个多维度的过程,涉及多个方面,包括但不限于安全性测试、漏洞检测以及防御机制验证。以下是关于大模型安全评测的一些核心方法和工具: #### 1. 安全性评测的核心要素 大模型的安全性评测主要围绕以下几个关键领域展开: - **安全风险识别**:分析可能存在的安全隐患,例如提示词注入攻击[^2]。 - **攻击方法模拟**:通过构建对抗样本或恶意输入来测试模型的鲁棒性和抗干扰能力。 - **防御策略有效性检验**:验证诸如强化学习对齐、系统提示词优化等措施的实际效果。 #### 2. 常见的大模型安全评测方法 以下是一些广泛采用的安全评测方法: - **黑盒测试**:不依赖于内部结构的知识,仅基于外部行为进行测试。这种方法可以有效发现未知漏洞。 - **白盒测试**:深入研究模型架构及其训练过程中的潜在缺陷。此方式适用于开发阶段的质量控制。 - **灰盒测试**:介于两者之间,在一定程度上了解目标系统的部分信息基础上执行渗透尝试。 #### 3. 使用的具体工具和技术手段 为了更高效地完成上述任务,业界已经发展出了多种专门针对AI/ML系统的自动化扫描器和服务平台: - **IBM Watson OpenScale**: 提供全面监控机器学习生命周期的功能,支持偏差探测、公平性度量等功能的同时也关注到了隐私保护议题。 - **Google TF-CV (TensorFlow Constrained Optimization)**: TensorFlow的一个扩展库,专注于帮助开发者创建更加稳健可靠的神经网络解决方案. 另外,《2024 中国大模型+数据分析”最佳实践案例 TOP10》中提到的成功经验也为其他企业实施类似项目提供了重要参考价值[^3]。 ```python import tensorflow as tf from tensorflow_constrained_optimization import constrained_optimizer_v2 def create_robust_model(input_shape): model = tf.keras.Sequential([ tf.keras.layers.Dense(64, activation='relu', input_shape=input_shape), tf.keras.layers.Dense(1) ]) optimizer = constrained_optimizer_v2.ConstrainedOptimizerV2( lambda variables: ( tf.reduce_mean(tf.abs(model(variables))), [])) model.compile(optimizer=optimizer, loss=tf.keras.losses.MeanSquaredError()) return model ``` 以上代码片段展示了一个简单的例子,说明如何利用TF-CV库增强深度学习模型抵御特定类型扰动的能力。 #### 4. 结合实际的最佳实践经验分享 从具体应用场景出发考虑问题往往能够取得更好的成果。比如金融风控场景下除了常规的数据预处理之外还需要特别注意防止敏感个人信息泄露;而在医疗诊断辅助决策过程中则要格外重视结果解释性的提升以便医生理解和信任算法给出的意见。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值