近来大模型赛道异常火热,很多投资机构的周会里,AI成为被提到最多的字眼。从“木头姐”报告里点名重视,到阿里、百度、腾讯、华为等大厂纷纷下场,AI+医疗场景成为最热的投研领域之一。
国家卫健联合三部委在去年11月,就出台了《卫生健康行业人工智能应用场景参考指引》,其中涵盖四大领域 84 个场景。无论是大厂亦或是新的创业团队,也雨后春笋般出现,引起投资行业热潮。随着讯飞医疗科技在香港上市,20余倍PS的高估值更是给医疗AI市场注入一针强心剂。
一、医疗AI的主要应用方向
在AI + 医疗的所有方向中,一些模式商业模式清晰,效率突出,付费端意愿及能力较强,发展相对迅速,如:
(一)药物研发
AI大模型在提升靶点预测发现、临床实验优化、分子结构设计效率,缩短研发周期,显著降低研发成本等环节作用显著。据 Tech Emergence 估算,AI有望将药物开发成本减少 4 倍,研发投入的回报率提升 5 倍。如医渡科技、华为“盘古”大模型等都是发力于此。
(二)影像辅助诊断
从之前纯人工标记,到现在大模型强化学习,对 CT、MRI 等影像可做到秒速识别病灶。当然,影像辅助诊断业务还存在场景过于单一、准确率不达预期、付费方模糊,商业市场规模吸引力不强的问题。但仍不乏联影、迈瑞、推想、鹰瞳等产业或独立玩家。
当然,还有很多其他领域,医疗AI都取得了一定的进展,这里不一一枚举了。
二、医疗AI的商业化前景
如果我们换个视角:以商业的维度,来判断各医疗AI产品商业化前景,以被服务者市场规模和付费能力来判断,也就是 to who模型作个简单归类:
(一)To 大医院(H)
在84 个场景中,可以看出to H端应用是最多的,如 患者就诊管理(预问诊、分诊、诊后随访)、医疗流程完善(影像、病历、审方)及院内运营管理(智能耗材、药房、配送、财务管理等)。
目前各大医院确实有落地实践大模型的意愿(或指令),但目前还存在两个问题:一是与患者直接相关的(如辅助影像诊断等)还很难向患者转移收费;二是医院项目定制化程度高、各医院决策独立、项目时间长,项目预算也相对有限(几十万至小百万)。但总体来讲医疗AI做to H 的业务做得好能有几千万年收入,但总体想象空间仍略显不足。
(二)To 小型专科医疗机构
目前市场上也涌现出一批口腔、眼科、医美、心理专科AI产品,如消费性医疗机构患者客服管理、病程复诊(正畸、孕产)管理、心理咨询、体检结果跟踪管理等产品。目前面临最大的挑战主要在于消费性医疗小B端的付费能力极低,市场规模较受限。
但也有个值得期待的点,就是“AI + 中医”,中医靠名医经验、有经验金方的特点跟 AI匹配度非常高,这也是为什么这个赛道中已经诞生如广安门中医院与百度合作的“广医岐智”,华为与天士力合作的“数智本草”,华为与九为合作的“盘古中医”等等众多中医AI 产品。
但是,这个赛道中仅靠模型拉动药品销售的市场空间相对有限,而线下中医连锁实体机构用其来做规模性扩张的明显更有价值。期待固生堂、问止及其他能在OMO模式上做出规模的中医机构。
(三)To G
G端业务,主要应用于基层和公卫。目前微医与天津市,讯飞医疗与合肥市、甘肃省,左医科技与宁夏省中卫市都有类似的业务,通过政府牵线,助力提升基层医生的诊疗能力,通过及时基层诊疗、慢病管理、合理用药指导等把疾病初期就在基层及时解决。这类业务的优点是政府背书,覆盖面大,且具有一定排他性,短期就能接入大量C端用户。
而 to G业务的挑战也有两点:一是复制性待验证,二是项目付费来源:基层市场庞大,微医目前收入近六成来源于此,讯飞医疗在基层的收入也占其总收入的三成至四成,但都是由当地卫健支付。这种模式长久来看考验当地医保的支付能力。在目前大环境下,自然是会让投资人产生些许担心。
(四)To Big Pharma
前文已经提到,大药厂付费能力和意愿都是最强的,CXO市场格局未来有可能受医疗AI能力的提升所改变。在这里除了新药研发之外,在基因测序、疫苗开发、器官芯片层面也会有巨大市场潜力。
(五)To 保险公司
商业健康险是最近市场非常热的领域,险司付费能力强,市场规模也足够大。全球范围来看,也是医疗AI最重要的商业化合作模式之一。但中外医保环境不同,国内目前与医疗AI公司如医渡、圆心等与险司主要在专慢病管理领域试水合作,也有一些专病“2B - 2C - 2I(保)”的创新商业模式,相信未来一定会出现模式创新的规模性优秀企业。
(六)To C
无疑,医疗 AI to C市场是最值得期待的领域,毕竟一旦形成规模,其生态价值是具有无限想象力的,而其中最引人关注的就是大模型。笔者近期与不少从业者与投资人就此话题进行了探讨,发现对此领域较深入的研究较少,也存在了一些受制于传统认知的误解,故专门组织一下文字,来进行一些分析与拆解。
三、To C 医疗AI大模型的本质
(一)不是之前互联网医疗的技术升级版
如果仔细研究一下互联网医疗与 to C 医疗AI大模型,会发现其存在本质上的差异,这个差异与医疗无关,而是大模型与互联网本质的差别,甚至可以说是一些前互联网人带着惯性思维做大模型产品失败的致命原因:
众所周知,互联网的价值,在于“连接”,尤其是对碎片化供给侧与碎片化的需求侧的连接:如腾讯、淘宝、滴滴、贝壳、华住、美团,无一不是从连接的规模效应中体现其平台的价值。其规模也就是最大的护城河,winner takes all,这也是当年各大平台疯狂对供需侧双向疯狂补贴买注册用户的原因,历历在目,不多赘述。当年的互联网医疗也是一样思路,尝试把碎片化的医生供给与广泛的用户需求连接起来,追求规模平台价值。
而很明显,大模型不是连接平台,而是供用户选择的“产品”。故其打法、价值与之前完全不同,毫无可比性,to C产品甚至在先发优势与前期的规模上都难说具有明确的价值。尤其在目前各家产品都还较不成熟的初期,用户的背叛成本极低。笔者曾经使用过的通用大模型就从文心一言、chatGPT、通义千问、kimi、智谱清言、豆包,到现在DeepSeek,转换成本几乎为零。这个道理看似很容易理解,却还是出现过之前某通用大模型公司烧钱买用户的“昏招儿”,顷刻间被DeepSeek以优秀的产品力抢夺市场,可以推测是互联网时代惯性思维在作怪了。
既然是产品,比的就是产品力,体验和成本是决胜之匙。DeepSeek如今脱颖而出,就是赢在了体验和成本两个最关键要素之上。
(二)当年互联网医疗,并非败于商业化,而恰恰败于产品体验
回头看当年的互联网医疗,当年春雨、丁香园、平安、好大夫等,兵戈非不坚利也,米粟非不多也,融资拿到手软,也都烧钱围拢起相当的规模。可惜城不高,池不深,最终都没做出期待的效果。大致可总结为以下问题:
- 用户对诊疗服务水准选择要求高:纯商品市场上很简单的道理,打车从拼车、快车、专车至豪华车,不同价格都有相应的用户,酒店二星至五星都有对应的人群。而诊疗本身对低质量的供给接受程度就非常低,所有用户只想要最少数的好医生。笔者曾经在互联网医疗平台上问了问题,看到一个标注为某县中医院一位主任医师面色严肃的老者照片时,还是默默点了取消。相信各位也曾有过类似体验。
- 患者信息不完整全面:患者的病史、过往诊疗记录、检查影像资料无法呈现在互联网医生面前,严重影响效果与体验。
- 诊疗过程片断割裂:同一患者在不同时间诊疗时,经常面对的是不同的医生,每次都要把自己情况重说一遍,不同医生还可能有不同的诊疗思路。各位试想,咱们连剪发都会担心的事情,放在医疗上,自然也严重影响体验。
- 响应反馈不及时:若患者也选择一些好医生,或想找同一位医生连续就诊,就会出现反馈非常不及时的情况。毕竟好医生平时还要出诊,要手术,要科研,要休息,自然也非常影响体验。
再加之随后国家为保证质量与患者安全,明令互联网医疗只能开展复诊,也是严重影响其发展。
故,有一种声音说“互联网医疗平台就是个伪市场”,细想来也自有一定道理。
那么,既然to C 医疗 AI 大模型作为一个产品,如果能弥补之前互联网医疗的缺点,做好自身产品的体验与成本,也许就有其巨大的市场机会。
(三)一个优秀的 to C 医疗 AI 大模型,应该是这个样子
很明显,一个优秀的医疗 AI 大模型,作为产品它首先就解决了优质医疗资源平权的问题,反馈的及时性、患者病史等互联网医疗时代的缺点也都可以通过技术手术统统解决,这也是市场尤其期待一个优质to C 医疗大模型供给方的原因。同样尝试总结一下,其应该至少具备以下特点:
1.海量专业知识库,并辅以海量真实且优质临床数据训练
这一点在C端使用上体感不强,但实则非常核心,同样也稀缺的能力。市场上有一种错误认知是医疗大模型只要在DeepSeek上套壳,把各类医疗教科书文献指南打包成知识库就行,其实这是非常荒谬的。
笔者曾经听过一个举例,很是形象。说大模型在具体场景里,像是一个力大无穷的年轻人走进铁匠铺干活儿,老师傅是万万不敢直接让他上手的。或者咱们可以把他比作一个熟读中医的博士生,熟记各种脉象文字表述,就是没真正搭过一个患者的手腕,结果可想而知。
专业知识库只是一个医疗大模型最基础的水准要求,要真正优秀的医疗大模型产品,若要提高准确度,降低幻觉率,必须有如协和、华西、瑞金、同济这样一线水平医院的真实诊疗数据。低质量的临床数据反而会拉低大模型的诊疗能力。如美国领先的to C医疗AI大模型 K Health,就从梅奥所得了530 万患者记录的大型匿名数据集,而保险公司Maccabi为K Health提供了包括4亿张医疗图表、5亿张处方和超10亿份实验室结果的匿名数据集。
2. “深度学习 + 推理能力 + 端到端智能”打造真实精准医患循证问诊体验
众所周知,DeepSeek众到广泛好评,很大程度上是由其类似GPT o1的推理模型R1大大提高了使用体验,推理分析能力自然也就成为一个优秀的to C医疗大模型的必备能力。而诊疗需要循证的特点,这也是DeepSeek等通用大模型所不具备的。下面我列出了同一个问题在 DeepSeek上与左手医生上的对话过程,一眼便知其区别:
可以清晰看出,DeepSeek属于一个问题列出所有可能性答案的模式。而这明显是不符合实际问诊场景的现实的。左手医生在这一点明显做得更专业,患者的每一次反馈,不仅列出了推理思考的过程,并像一个真实医生一样进一步提问与患者对话,最终得到最可能的诊断。
另外,“端到端”的能力也是一个重要加分项。诊疗行为模型底层子流程繁杂,而医疗本身的严谨性对准确率要求极高。具备“端到端”能力的大模型能降低大模型幻觉可能性,更好地提高准确率。
3. 用户病史及过往医疗记录的永久记忆
在上图左手医生问诊体验流程的最上部,可以看到大模型有确认用户身份信息,并“查询健康档案”这一个步骤。这一点也是解决以往互联网医疗的最大短板的一个能力:确认用户是谁,并回溯以往有记录的所有病史过敏史,影像检验信息,并都要永久记忆以综合判断。
用户的以往所有问诊记录与上传资料是个较大的工程,当然这也一定程度上提高了用户的背叛成本,有可能会成为to C医疗大模型的护城河。当然,这也在技术上向大模型产品提出了支持多模态的能力,语音(方言)识别,OCR、读片等功能也是一个优秀产品的必备能力。
4. 与家用、可穿戴医疗设备广泛生态互联
我们对to C医疗大模型未来商业价值的高期待,最大程度上也是与其家庭医疗生态场景相关,市场空间无限。故优秀的产品,也需要广泛地与家用血压、血氧、血糖、体重等设备互联;与药店或当地医疗机构生态合作更是加分项。
四、产品力优秀的 to C医疗AI大模型,商业化不是挑战,且价值巨大
从DeepSeek的成功,我们可以尝试得到一个结论:即大模型产品的挑战不在于商业化,而在于其产品力。我们也可将其商业化选择简单整理:
-
用户年费:短期有效,美国K Health就向终端用户收取年费,但以中国互联网精神与经验来看,必不长久。
-
导流(绿通):这个模式比较 tricky,导向大医院叫“绿通”,算是用户权益;导向基层是政府任务,导向民营消费医疗机构才是有可能产生商业利益的“导流”。但笔者对这种模式态度比较保守,不建议作为主要商业化路径。
-
电商:正所谓“to C 万般模式终电商”,药品、家用医疗器械、用品、辅具市场前景巨大。如微医云药房2023 年收入已有6.6 亿,占总收入三分之一强;讯飞医疗2024年仅其助听器销售收入就近8000 万元(估算);左医科技目前也与某知名连锁药店集团试水合作。
-
与保险公司合作专病慢病管理:这是目前比较热的一种模式,除了很多家用智能硬件厂商AI参与患者专病管理之外,大模型公司也在积极探索与保险公司在专病管理领域的创新合作模式。前文已经提及讯飞医疗科技与微医均已与社保有慢病管理合作;此外,AI + 互联网医院代表企业微脉与保险公司也开展了广泛多模式的合作,医渡虽未开展to C AI问诊,其与保险公司的合作模式也值得借鉴。全球范围内,K Health也有关于减重管理的专项服务。
重点与挑战
还有一个重点的点在于,既然不是互联网时代连接规模决定成败的机制,医疗AI大模型 to C 市场应该不会出现 winner-takes-all 的局面。市场很可能出现二元甚至多元格局。商业基本逻辑告诉我们,市场结构与门槛直接相关。从医疗大模型产品的研发成本和市场壁垒来评估,我们可以预测未来市场至少三至五家机构产品形成市场第一梯队的格局。
商业化路径中的另一个挑战,就是各家公司获C的能力。前文已经提到,在大模型市场里,在产品力没有明显优势的前提下通过烧钱补贴扩大用户规模是个并不明智的打法。而C端用户对于医疗AI大模型产品的细微的技术优劣性体验是不敏感的(毕竟不少人目前认为DeepSeek也能用)。这就对各家企业获C的能力提出了考验。
目前,如微医、讯飞医疗、微脉、左医都探索出了 2H - 2C 的打法。讯飞医疗更有凭借其强大的BD能力已经覆盖全国31个省、超600个县之中近300家二级以上医院和近6万家基层医疗机构进行业务合作,向其所覆盖的C端人群提供服务。
总结
医疗 AI大模型to C,这个未来商业价值充满想象力的市场中,我们要准确从互联网医疗与大模型的本质区别去分析,以清晰的逻辑将市场分类,以核心关键指标去梳理评估市场上各类公司价值。做到这点些,我们才能准确识别出市场上最有潜力的黑马。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。