国产大模型 DeepSeek 出圈,掀起了全民学AI、用AI热潮。继 2024 年“开展人工智能+行动”被写入政府工作报告,今年全国两会期间,“人工智能+”继续成为热点话题。作为大模型应用关键场景的医疗行业亦迅速响应,据不完全统计,上千家医院接入大模型,实现 DeepSeek 本地化部署的医院已有300多家。
在技术的喧嚣下,我们必须清醒地看到,当前医疗大模型应用仍处于“技术驱动”的初级阶段,实际应用深度还比较低。从通用模型到垂直领域的落地,需要精准的业务需求和场景把握、有效的数据治理、持续的训练和创新探索以及在垂直领域的长期积累,帮助医疗机构直击业务痛点,找到最佳发展路径。
下面就结合不久前参加2025 HIMSS 大会,谈一谈个人的一些观察、思考与展望。
*几点**观察:大模型医疗应用的“虚实辩证”*
观察1:DeepSeek 让我国快速进入AI时代。尽管2022年底 chatGPT 发布意味着大模型时代的来领,但闭源生态、价格较高以及访问限制等因素,国内基本都是专业人员在玩。而 DeepSeek 因技术先进、功能强大、开源生态、性价比高、国产化信创和私有化部署等优势,让普通民众以及广大机构真切感受到智能时代的来临,并积极投入到应用中。
观察2:大模型还处于技术驱动阶段。大模型技术快速迭代,技术突破仍是核心引擎,并主导创新。相比其他应用,比如互联网医疗,就是处于业务驱动,技术已经成熟,业务创新更为重要。
观察3:医疗大模型应用处在浅层次。尽管不少医院私有化部署或接入大模型,但大多还是基于ToC产品做ToB的浅层次应用,对业务的支撑和融入还比较有限。由于应用时间较短、场景挖掘不够、算力不足、数据质量问题等制约因素,还需要时间进行工程落地验证,我相信2025年会得到快速发展。
观察4:医疗大模型局部应用取得突破。在医学影像领域,大模型正从“单病种阅片”向“全流程赋能”进化,2024年就超过40款产品获批三类注册证。在导诊、医患匹配、预问诊、随访、陪诊等几个功能层面以及AI 驱动的虚拟健康助手和聊天机器人领域,凭借7*24小时在线化,大模型从根本上改善了患者满意度和客服工作效率。
观察5:中美部署和应用模式不同。3月份有机会参加2025 HIMSS 会议,近距离考察美国医疗大模型应用。美国偏向云端应用,通过脱敏上传、用完即焚以及符合 HIPPA 法案等措施,确保云端数据的安全。即使要部署私有化大模型,通常也是租赁 AWS 等云算力而不是独立部署算力。对比国内的情况,国内更倾向私有化部署,好处是数据可能更安全,缺点是大模型推广应用成本更高,中小医院短期内难以快速步入AI时代。
观察6:中美产业生态不同。美国重在生态布局,如美国电子病历生成主要就微软和 Abridge 等几家企业,即使像 EPIC 等头部电子病历产品也是集成微软和 Abridge 等病历生成系统。反观国内,大部分企业特别是规模大一点的企业,基本都是从0到1研发自己的产品,产业生态有待完善。
落地方法论:医疗AI价值实现的“五维罗盘”
从“技术炫技”式浅层尝试,到落地应用的“价值锚定”,我认为需要依据医疗AI价值实现的“五维罗盘”来设计:
*明确场景*:AI应用需按照使用场景的需要来搭建,技术工具是为解决业务问题而生,且必须是旧技术无法替代的场景。《卫生健康行业人工智能应用场景参考指引》中对AI应用场景分为四大板块13类,建议进行场景定义分级、分层推进AI应用。
*模型方案*:从ToC的开源模型到ToB的专业应用,首先要基于基座模型,要围绕业务场景和专有数据进行专业化处理,然后是AI Agent(智能体)的开发应用。在基础的通用层(如客服、陪诊、导诊、随访)解决“有无”问题,通过开源模型快速铺开;临床层(如病历生成、辅助诊断)需要“知识蒸馏+领域微调”双重加固;尖端层(如药物研发、放疗靶区勾画)必须构建专科化模型。
*部署算力*:大模型不是万能的,算力才是硬道理。考虑到成本效益,医院的算力部署要合适,避免浪费。可梯度化资源配置,业务体量非常大的医院采用私有化部署,中小型医院可私有化租赁云端算力,跟安全和隐私关系不大的通用型应用可通过API直接调用云端大模型。福州、淄博等政府正在主导建区域算力中心,实行规模化、集约化部署算力资源,这或是未来的另一种趋势。
*数据治理*:大模型依然是数据驱动的AI应用,医疗大模型不能做通用技术的“拿来主义”,而是需要源自临床指南、专家共识、病历数据等海量医疗数据中的“临床知识蒸馏”的深度定制。数据治理的能力,决定数据材料的质量与价值,也决定医疗大模型的输出能力。没有好的数据做语料,所谓的大模型势必“已读不回”“已读乱回”,我们需要“智能”而不是“只能”,不能让AI客服最终变成了“让人克服困难”。
*工程落地*****:****做好集成实施规划,面向未来需求丰富集成方案,注重信息安全,保证系统强健性,这是做好工程落地的重要一环。
未来图景:大模型掀起多维度的范式革命
站在2025年的门槛上,我认为医疗大模型将经历三大跃迁:
1.****诊疗范式变革:AI贯穿医疗全流程。大模型最大的领域是提高临床医生的服务质量和生产力,其次是改进患者参与度和体验。****AI在就诊导航、咨询问诊、病历自动生成、实现病历的结构化与标准化、辅助医生临床决策、治疗方案制定、开具医嘱、检查结果解读及随访等关键环节中实现智能化,AI贯穿医疗全流程。
2.*软件范式变革:从“人适应系统”到“系统理解人”*****。大模型的特征之一就是基于自然语言的人机交互,****这不仅提高了应用体验,关键是扭转了从“人适应系统”转向“系统理解人”的信息化局面,医生可以用自然语言沟通,比如“显示最近的血糖结果”,AI会迅速提取信息,生成总结,甚至建议下一步诊疗方案。
其次是基于临床业务流的各种软件系统高度集成,更符合临床思维的操作步骤,让不同业务场景之间更加连贯。各个业务不再是信息割裂的个体,而是通过大模型构建的智能生态,实现数据安全共享与价值共创,重塑医疗体系的协作范式。
3.*知识应用范式变革:从“被动获取”到“主动**推送**”**。从训练数据中提取到的*“知识密度”决定大模型的智力水平,大模型技术突破也同样在重构知识“生产-传播-应用”链条,把传统依赖专家生产、结构化存取的碎片知识点,转变为自然语言调用、主动生成、个性服务的全面应用,推动人类从“记忆知识”走向“驾驭知识”,未来的核心竞争力,不再是掌握多少知识,而是如何更好人机协作解决复杂问题。
未来已来,将至已至。我一直把自己定位为新技术的积极倡导者和冷静的观察者,对待新技术我们应该“谋定而后动,知止而有得”,要做到认知提升,总体考虑,顶层设计,分步实施。既不要跟风一哄而上,也不要只做个清醒的旁观者,无动于衷。正如《哪吒》导演饺子所言:“出来混,你要先出来”, 先上手,找体感,聚焦最能创造价值和投入产出比高的业务场景,再逐步深化应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。