Python + DeepSeek:打造拥有记忆的AI 智能助手,让效率提升100倍!

🚀 Python + DeepSeek:打造拥有记忆的AI智能助手,让效率提升100倍!

🔥 Python开发者必看!你是否想用DeepSeek结合ChatGPT,打造一个真正能记住对话AI助手

python琛会手把手教你如何用Python代码,快速实现智能记忆+自动回复,让你的效率提升100倍!

🧠 AI也能有记忆?Python 赋予 DeepSeek 超强记忆力!

为什么AI需要拥有记忆?

还记得昨天的AI助手吗?它虽然能回答问题

但一到新对话就“失忆”,完全不记得你是谁

这样聊天像是在和金鱼对话!

为了让 AI 助手变得更像私人助理,我们要给它加点“记忆”能力,让它能回忆起之前的聊天内容。

怎么让DeepSeek打造的GTP-AI拥有记忆功能?

可以用数据库来存储聊天记录,比如SQLite或MySQL。

然后,每次对话时,把之前的记录拿出来,结合当前的输入,让 AI 能连续对话。

代码示例
import sqlite3   import datetime      # 连接数据库   conn = sqlite3.connect('chat_history.db', check_same_thread=False)   c = conn.cursor()      # 创建对话记录表   c.execute('''CREATE TABLE IF NOT EXISTS chat_history                (user_id TEXT, timestamp TEXT, message TEXT)''')   conn.commit()      # 存储对话记录   def save_chat_history(user_id, message):       c.execute("INSERT INTO chat_history (user_id, timestamp, message) VALUES (?, ?, ?)",                 (user_id, datetime.datetime.now(), message))       conn.commit()      # 读取最近 5 条对话记录   def get_chat_history(user_id):       c.execute("SELECT message FROM chat_history WHERE user_id = ? ORDER BY timestamp DESC LIMIT 5", (user_id,))       return [row[0] for row in c.fetchall()]   

📌 优化建议

  • 如果AI使用量大,建议换 PostgreSQL,并加个缓存优化。

  • 还可以用LangChain这种工具来管理对话历史,省去自己写逻辑的麻烦。

🔧 让 AI 更智能:给它装上“技能包”

🌦 天气查询(出门前先问 AI)
import requests      def get_weather(city):       try:           url = f"https://api.weatherapi.com/v1/current.json?key=YOUR_API_KEY&q={city}"           response = requests.get(url)           data = response.json()           return f"{city} 现在是 {data['current']['temp_c']}°C,{data['current']['condition']['text']}"       except Exception as e:           return "天气查询失败,请检查 API Key 或网络连接!"   

💡 优化建议

  • 使用缓存减少 API 请求次数,降低成本。

  • 提前设置默认城市,防止用户输入错误。

🌍 翻译功能(秒变多国语言专家)
from deep_translator import GoogleTranslator      def translate_text(text, target_lang='en'):       return GoogleTranslator(source='auto', target=target_lang).translate(text)   
🔍 信息检索(AI变身你的搜索助手)
import requests      def search_google(query):       url = f"https://www.googleapis.com/customsearch/v1?q={query}&key=YOUR_API_KEY&cx=YOUR_CX"       response = requests.get(url)       return response.json().get('items', [{}])[0].get('snippet', '未找到相关信息')   

🌐 如何让 AI 助手 24 小时在线?

🚀 服务器部署(让AI全天候待命)
from flask import Flask, request, jsonify   app = Flask(__name__)      @app.route('/chat', methods=['POST'])   def chat():       user_id = request.json['user_id']       message = request.json['message']       response = generate_response_with_history(user_id, message)       return jsonify({'response': response})      if __name__ == '__main__':       app.run()   

📌 优化建议

  • FastAPI 替换 Flask,速度更快!

  • Docker 打包,部署更方便。

☁️ 云端部署(随时随地访问 AI)

可以选 AWS Lambda、Heroku、Vercel 这些平台,让 AI 在线 24 小时待命。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 使用PythonDeepSeek构建数据库及AI助手 #### 构建数据库 为了使用Python创建一个高效的数据库,可以采用SQLite作为轻量级的关系型数据库管理系统。对于更复杂的应用场景,则可以选择MySQL或PostgreSQL等更为强大的关系型数据库系统[^1]。 当涉及到数据操作时,Pandas是一个非常有用的库,它提供了高性能的数据结构以及数据分析工具;而SQLAlchemy则提供了一个全面的ORM(对象关系映射),使得开发者能够更加方便地管理数据库中的表单与记录。 ```python import sqlite3 # 创建一个新的 SQLite 数据库连接 conn = sqlite3.connect('example.db') # 获取游标对象来执行 SQL 命令 c = conn.cursor() # 创建表格 c.execute('''CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, name TEXT, age INT)''') ``` #### 构建AI助手 关于构建基于自然语言处理(NLP)技术的人工智能助手方面,如果希望深入了解NLU(自然语言理解)引擎的工作原理及其应用实例,网络上存在大量优质资源可供查阅——只需简单搜索‘Wit tutorial’即可找到许多教程资料[^2]。 具体到实现层面,在Python环境中开发此类应用程序通常会依赖于诸如spaCy这样的高效工业级NLP库来进行文本预处理、实体识别等工作;而对于对话系统的搭建来说,Rasa框架因其灵活性和支持多轮次交互的能力而备受青睐。 此外,考虑到DeepSeek作为一个专注于企业级搜索解决方案的产品,其内部集成了先进的机器学习模型用于提升检索效率和服务质量。因此,在利用该平台打造个性化推荐系统或是问答机器人时,应当充分挖掘这些特性所带来的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值