通感一体最新进展和十大未决挑战

文摘内容:

预计通感一体(ISAC)将成为下一代无线网络(例如超越 5G (B5G) 和 6G))的关键推动因素之一,以支持各种新兴应用。本文全面回顾了 ISAC 系统的最新进展,特别关注其基础、物理层系统设计、网络方面和 ISAC 应用。此外,讨论了每期中出现的上述相应开放性问题。因此,从传感和通信 (S&C) 的信息论开始,然后通过阐明基本性能指标来介绍 ISAC 系统的信息论极限。接下来,讨论了他们的时钟同步和相位偏移问题、相关的帕累托最优信号策略,以及相关的超分辨率物理层 ISAC 系统设计。此外,设想 ISAC 为依赖网络传感的未来蜂窝网络带来范式转变,改变经典的蜂窝架构、跨层资源管理方法和传输协议。在 ISAC 应用中,进一步强调了无线传感的安全性和隐私问题。最后,研究了代表性 ISAC 用例的最新进展,即使用无线信号的多对象-多任务 (MOMT) 识别问题。

文献图表:

文献结论:

本文评价了 ISAC 系统的最新进展,并提出了 10 个开放性挑战,其中一些已经取得了初步进展,而另一些则仍处于探索阶段。首先,介绍了 ISAC 系统的理论基础,首先介绍了挑战 1 关于涉及 S&C 性能限制的基本理论。然后在挑战 2 中,讨论了如何从传感数据中推断 CSI,并提出了几种潜在的解决方案和未来方向。此外,还提出了挑战 3,它侧重于整合和协调收益,并提出了一个非正式的指标来量化它们。此外,还在挑战 4-6 的背景下解决了 ISAC 系统的设计问题。更具体地说,详细阐述了时钟同步、帕累托最优信号策略和超分辨率方法的开放问题,以及它们的潜在解决方案和未来方向。然后,继续将重点转移到 ISAC 网络。通过将传感视为未来蜂窝网络中的一项服务,分别在挑战 7 和 8 中研究了潜在的蜂窝架构以及跨层资源管理和网络传感的协议设计。接下来,将注意力集中在有吸引力的 ISAC 应用程序上。强调了相关的传感安全和隐私问题,并在挑战 9 中从 PHY 和 MAC 层的角度提出了相应的未来方向。最后,谈到了依赖于无线信号的人类活动传感场景,并讨论了挑战 10 中 MOMT 传感的开放问题。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

5G-A通感一体化是一种新兴的通信技术,将5G物联网(IoT)相结合,打造一个智能世界。它具有许多可以应用的场景、挑战关键技术。 在场景方面,5G-A通感一体化可以广泛应用于智慧城市、智慧交通、智能家居、智能医疗等领域。例如,在智慧城市中,5G-A通感一体化可以实现道路交通信息的实时感知与传输,实现精准的交通管理;在智能家居中,5G-A通感一体化可以连接家庭设备,实现智能控制远程监控。 然而,5G-A通感一体化也面临一些挑战。首先是通信网络的可靠性带宽的需求。由于大量的物联网设备将连接到网络网络的承载压力将大幅增加。其次是隐私安全问题。随着物联网设备数量的增加,数据传输的安全性隐私保护变得尤为重要。还有设备互操作性标准化的问题,不同厂商的设备需要保持兼容,以确保系统的正常运行。 关键技术是实现5G-A通感一体化的基础。其中包括低功耗、广覆盖的通信网络,这可以通过5G技术以及大规模天线阵列技术实现。此外,需要高效的通信协议传输机制,以确保设备之间的快速连接数据传输。物联网设备的感知识别技术也很重要,可以通过传感器、RFID技术等实现设备的智能感知。最后,数据处理分析技术是关键,以便从物联网设备生成的海量数据中提取有价值的信息。 总之,5G-A通感一体化具有广泛的应用场景,但也面临着网络可靠性、隐私与安全以及设备互操作性等挑战。实现这一目标需要关键技术的支持,包括通信网络、传输机制、设备感知识别以及数据处理分析技术等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值