与 AI 协同的三种方式
这些模式根据 AI 在任务中的不同参与程度和角色进行区分,从而实现更加高效的合作方式。
下面把上述模式代入到 ToB 产品的设计中。
如果有客户咨询相关问题,最朴素的流程可能是:
1. 客户发送相关问题;
2. 客服人员根据经验或者查询相关手册,获取答案;
3. 结合相关礼貌用语,和用户沟通并解答。
1. Embedding 模式
通过将 AI 工具嵌入到现有软件界面中,客服人员就可以在日常流程中调用这些 AI 功能,无需额外学习新的工具,轻松获得支持。
这种内嵌策略应该是让 AI 最快落地应用的方式之一,比如钉钉对接了通义千问。
但 Embedding 模式的局限性也是显而易见的,受限于工具现有架构,强大的 AI 功能多为散点式存在,无法形成协同效应。
这意味着人仍然处于绝对主导的位置,只能在特定任务或局部利用AI进行增强和提效,无法享受全面的智能化服务。
因此,Embedding模式更像是现阶段应对生成式AI大潮的过渡方案。
2. Copilot 模式
与上一模式不同,Copilot 模式下的 AI 不再局限于单个问题的解答,借助多方面实力,延伸至客户整个服务周期,综合各个阶段情况提供辅助支持。
也就是说,当接收到客户信息那一刻起,Copilot 便能够基于强大的知识库和用户数据,对历史数据进行分析,并给出具体的沟通建议,还可以生成参考回答方案。
形态上可以参考目前较火的 [Kimi 插件],Copilot 可能会以边栏或者悬浮窗口的方式存在。
Copilot 模式对于协同关系最大的改变是——AI 不再只是智能化增强的信息处理工具,而是助力全流程的提质提效。
3. Agents 模式
2024年3月26日,吴恩达教授发表了一次主题为《Agentic Reasoning》的演讲。在这场时长仅有13分钟的演讲中,吴恩达教授分享了当下 AI Agent 主流的 4 种设计模式,包括分别是反馈(Reflection)、工具调用(Tool Use)、规划(Planning)和多智能体协作(Multi-agent Collaboration)。
这些模式在实战中非常实用。在客服领域,Agent 可以被培养为一个个擅长不同业务问题和拥有不同经验知识的解决问题高手,可以自由选择、组合或去除各种技能,这就是多智能体协作。
根据所需能力,可以为 Agent 配备联网工具,此即工具调用。并将业务知识和其他相关技能上传供其学习,并且一次学习可以多次使用,边际成本非常低。你能想象一个精通业务知识,还懂心理学的高质量客服吗?
客服的角色因此被彻底改变,更多时候只需要站在 Leader 的视角等待 AI 进行任务拆解和分配、信息收集、方案生成和检查均由 Agent 全权代理并自动完成,AI 成为真正意义上的解决问题的主体。这里就用到了反馈和规划。
对客服从业者而言,最重要的不再是背诵话术之类低门槛的技能,而是针对各自业务的场景,积累总结服务方法论,最终泛化为 AI Agents 的能力。
AI Agent 产品的应用场景
E2B出品的这份AI Agent行业全景图,所涉及的项目不算是最全的,却是比较完整的,目前所涉及的行业及领域都有相应的代表性产品。
从中可以看出,垂直领域类的 Agent 目前数量很少,也就意味着比较广阔的市场,非常值得大家去探索。
风险投资机构 Madrona 在 23 年 6 月份发布的一篇关于AI Agents 的博文中有下图👇。
图中罗列了当时比较具有代表性的生成式 AI 应用,可以看到很多老熟人,比如 runway、Midjourney 等等。其实结合本文内容来看,其实这些应用当时就在走向 Agent 模式。
增强板块(ENHANCED)列举了当时非常接近于 Agent 的应用,原生板块(NATIVE)分为内容创作和个人智能体&聊天助手两部分。
内容创作部分分为视频/图片、市场营销图片、写作、幻灯片、额外内容创建及3D游戏开发几个子版块;个人智能体&聊天助手部分是按照行业应用划分的,分为购物、外卖/即时订餐、家居、房地产、餐厅订位、横向聊天助手、个人生产力、旅行、人工智能朋友/伙伴、健康和教练及教育等行业。
总结
Grand view research 的统计数据显示,2022 年全球自主人工智能和自主智能体市场规模为 39.3 亿美元,预计从 2023 年到 2030 年将以 42.8% 的复合年增长率增长,其中亚太地区的复合年增长率将高达 46.2% !
所以未来 AI 智能体的表单必然会越来越长,而在此过程中,也一定有新的机会和机遇在等着有准备的大家!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。