荣登Nature! 持续学习(Continue Learning)取得最新突破

2024深度学习发论文&模型涨点之——持续学习

Nature发了一篇《Loss of plastisity in deep continual learning》

文章介绍了一种创新的算法——持续反向传播(Continual Backpropagation),该算法通过在每次迭代中随机重置一小部分较少使用的神经元来保持网络的塑性。这种方法通过不断引入多样性来维持网络的塑性和可变性,对于持续深度学习领域来说是一个重大突破。

作者Richard Sutton,作为强化学习领域的领军人物和权威,被誉为“强化学习之父”。他在人工智能领域的贡献涵盖了时间差分学习、策略梯度方法以及Dyna架构等多个方面。

论文精选

论文1:

【Nature】Loss of plasticity in deep continual learning

深度持续学习中的塑性丧失

作者:Shibhansh Dohare, J. Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A. Rupam Mahmood, Richard S. Sutton

方法

  • 标准深度学习方法:使用经典的ImageNet数据集和强化学习问题来展示深度学习在持续学习设置中的塑性逐渐丧失。

  • 持续反向传播算法(Continual Backpropagation):一种变化的反向传播算法,通过持续随机重新初始化一小部分使用较少的单元来维持网络的多样性和塑性。

  • 损失塑性测试:通过在多个任务上训练和评估网络,测量网络在新任务上的学习能力,以评估塑性损失。

创新点

  • 塑性损失现象:首次系统地展示了标准深度学习方法在持续学习设置中逐渐失去塑性,直到它们的学习效果不如浅层网络。

  • 持续反向传播算法:提出了一种新的算法,通过在每一步中重新初始化一小部分使用最少的单元,有效地维持了网络的塑性,即使在长期学习中也能保持学习性能。

  • 塑性损失的解决方案:通过实验表明,基于梯度下降的方法不足以维持深度学习的塑性,需要一个随机的、非梯度的组成部分来维持网络的变异性和塑性。

论文2:

Computationally Budgeted Continual Learning: What Does Matter?

计算预算的持续学习:什么才是重要的?

作者:Ameya Prabhu, Hasan Abed Al Kader Hammoud, Puneet Dokania, Philip H.S. Torr, Ser-Nam Lim, Bernard Ghanem, Adel Bibi

方法

  • 计算预算限制:在每次时间步长中,对持续学习方法施加固定的计算预算,以模拟实际应用中的计算和时间限制。

  • 多种数据流设置:在数据增量、类别增量和时间增量设置中评估不同的持续学习策略。

  • 传统CL方法的性能比较:评估了包括采样策略、蒸馏损失和部分微调在内的各种传统CL方法在计算受限环境下的性能。

创新点

  • 计算预算的现实考量:首次将计算预算作为持续学习研究的核心考量,更贴近实际应用场景。

  • 大规模基准测试:通过在两个大规模数据集上的实验,提供了对传统CL方法在计算受限环境下性能的全面分析。

  • 简化方法的有效性:发现在计算受限的持续学习中,简单的基于经验回放的方法(Naive)优于所有考虑的复杂CL方法,挑战了现有CL方法的有效性。

论文3:

【CVPR】Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters

通过专家混合适配器提升视觉-语言模型的持续学习能力

作者:Jiazuo Yu1, Yunzhi Zhuge1, Lu Zhang1,*, Ping Hu2, Dong Wang1, Huchuan Lu1 and You He3

方法

  • 动态扩展预训练CLIP模型:通过集成响应新任务的专家混合(MoE)适配器来动态扩展预训练的CLIP模型。

  • 分布判别自动选择器(DDAS):引入DDAS自动将输入分配给MoE适配器或原始CLIP,以分别处理分布内和分布外的输入。

  • 增量激活-冻结策略:在持续学习过程中,应用增量激活-冻结策略帮助专家学习任务内知识并鼓励任务间合作。

创新点

  • 参数效率框架:提出了一个参数效率的持续学习框架,通过MoE适配器动态扩展架构,增强了模型的适应性和效率。

  • 增量激活-冻结策略:开发了MoE框架中的增量激活-冻结策略,使专家能够同时获取任务内知识和进行任务间合作。

  • 分布判别自动选择器(DDAS):设计了DDAS以自动子流分配,有效融合了抗遗忘和零样本转移能力在一个统一模型中。

论文4:

A Comprehensive Survey of Continual Learning: Theory, Method and Application

持续学习全面综述:理论、方法与应用

作者:Liyuan Wang, Xingxing Zhang, Hang Su, Jun Zhu, Fellow, IEEE

方法

  • 基本设置:介绍了持续学习的基本公式化、典型场景和评估指标。

  • 理论基础:总结了持续学习的理论努力,包括稳定性-可塑性权衡和泛化性分析。

  • 代表性方法:提供了一个最新的详尽分类,分析了代表性方法如何实现持续学习的目标。

  • 实际应用:描述了这些方法如何适应实际应用中的特定挑战,如场景复杂性和任务特异性。

创新点

  • 系统性总结:首次系统性地总结了持续学习的最新进展,包括理论、方法和应用。

  • 全面视角:提供了一个全面的视角,促进了对持续学习领域的后续探索。

  • 交叉方向前景:讨论了持续学习的当前趋势、跨方向前景和与神经科学的跨学科联系。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值