Transformer杀疯了!王炸成果荣登Nature,实现无限上下文长度

谷歌推出Infini-attention机制,将内存压缩引入Transformer,允许大模型在有限资源下处理无限长输入,内存压缩比高达114倍。同时,文中概述了其他21种Transformer改进方案,包括Life2vec和Searchformer,展示了在处理长序列和复杂任务方面的创新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

继DeepMind的新设计MoD大幅提升了 Transformer 效率后,谷歌又双叒开始爆改了!

与之前荣登Nature子刊的life2vec不同,谷歌的新成果Infini-attention机制(无限注意力)将压缩内存引入到传统的注意机制中,并在单个Transformer块中构建了掩码局部注意力和长期线性注意力机制。

这让Transformer架构大模型在有限的计算资源里处理无限长的输入,在内存大小上实现114倍压缩比。(相当于一个存放100本书的图书馆,通过新技术能存储11400本书)

对比几种不同Transformer模型可处理上下文的长度和内存占用情况

目前,关于 Transformer 的改进非常火爆,是当前学术研究的热点之一,有丰富的研究素材和灵感可供我们参考。除Infini-attention外,还有很多Transformer改进方案效果拔群。

本文整理了22篇Transformer最新的改进方案,都是大佬团队出品,开源的都附上了代码方便复现,希望能给各位的论文加加速。

论文原文以及开源代码需要的同学看文末

Infini-attention

### Transformer 架构的创新应用 #### 在自然语言处理中的扩展应用 Transformer 已经应用于语言建模任务,比如预测序列中的下一个词。相较于传统的基于RNN模型,这种架构展示了更高的效率和准确性[^1]。 ```python import torch.nn as nn class TransformerModel(nn.Module): def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers): super(TransformerModel, self).__init__() self.transformer = nn.Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers) self.embedding = nn.Embedding(vocab_size, d_model) def forward(self, src, tgt): src_emb = self.embedding(src) tgt_emb = self.embedding(tgt) output = self.transformer(src_emb, tgt_emb) return output ``` #### 模型微调技术的进步 混合式参数高效微调(PEFT)方法结合了LoRA、Prefix-tuning以及Adapter的优势,进一步提升了特定领域内迁移学习的效果。通过引入神经架构搜索(NAS),可以自动探索最优的PEFT配置方案来适应不同的应用场景需求[^3]。 #### 跨域机器人控制策略转移 对于物理世界中的机器人控制系统而言,《Sim-to-Real Transfer of Robotic Control with Dynamics Randomization》探讨了一种新的思路——即通过对模拟环境中动态特性的随机化处理实现从仿真环境向真实世界的无缝过渡,这同样体现了Transformers背后思想的一种延伸和发展方向之一[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值