在数字化时代,数据的价值愈发凸显,然而,原始数据中常常掩藏着杂质和错误,阻碍了企业实现数据的最大化价值。而在这个过程中,数据清洗、数据处理和数据集成成为解锁数据潜力的不可或缺的三部曲。本文将深入探讨这个关键的三部曲,揭示数据清洗、数据处理和数据集成在解锁数据价值方面的重要性和方法。
细致化的数据清洗
数据清洗是解锁数据价值的第一步,它类似于珠宝匠人的雕琢,将未经加工的原石打磨成闪耀的宝石。数据清洗的目的在于去除数据中的噪音、错误和冗余,确保数据的质量和准确性。通过精细的数据清洗,企业可以获得高质量的数据基础,从而在后续的数据处理和分析中确保准确和可靠。
数据清洗主要在以下方面提升数据价值:
-
提升数据质量:在数据收集过程中,通过数据清洗能够识别并纠正数据输入错误,使得数据能准确地反映实际情况;数据清洗可以采用多种方法来处理缺失值,如填充均值、中位数或使用机器学习算法进行预测填充。当数据来源于多个不同的系统或渠道时,可能会出现数据不一致的情况。数据清洗能够将这些数据统一格式,数据能够保持一致,确保数据分析的可靠性,为企业的战略决策提供有价值的参考。
-
**优化数据分析结果:**原始数据中可能包含一些异常值或随机误差,这些被称为噪声。在分析股票市场数据时,可能会因为网络延迟、系统故障等原因产生一些不符合实际交易趋势的异常数据点。通过数据清洗,可以采用统计方法(如 3 - sigma 法则)识别并去除这些噪声数据。对于机器学习和数据挖掘任务,数据清洗至关重要。如果训练数据存在错误、缺失值或不一致性,会导致模型性能下降。通过清洗数据,去除错误数据,合理处理缺失值,能使模型更准确地学习到客户流失的真正特征和规律。
高效的数据处理
经过精细的数据清洗,数据就进入了高效的数据处理阶段。这一步骤类似于将原石打磨成璀璨的宝石,将数据转化为有价值的见解。高效的数据处理包括数据分析、挖掘隐藏的关联性和趋势,以及生成可视化报告等。通过应用数据处理技术,企业可以从海量数据中快速提取有用信息,为业务决策提供有力支持。
在高效的数据处理阶段,首先通过数据分析中的描述性分析,计算如均值、中位数等统计指标,以明确数据特征,像在销售数据里确定产品平均销售量及销售稳定性,辅助库存管理策略制定;相关性分析可揭示变量间关系,如客户年龄与购买产品类型关联,助力精准营销;差异性分析则能找出如不同地区销售业绩差异,推动成功经验推广。其次,数据挖掘借助关联规则挖掘,如零售行业挖掘出面包与牛奶的购买关联,以开展商品组合促销;时间序列分析能剖析股票价格、产品销量等数据的趋势、季节及周期变化,便于电商企业把握销售机会。最后,生成可视化报告,以直观图表和图形展示数据,不仅提高了决策者理解数据关键信息的效率,还在企业内部会议及跨部门沟通中,有效传达数据见解,促进部门协作与决策一致,全方位提升数据价值,为企业业务决策提供有力支撑。
无缝的数据集成
经过精细的数据清洗和高效的数据处理,数据集成将数据从各个来源整合成一个有机的整体。数据集成阶段通过数据汇聚与整合,消除数据孤岛并丰富数据维度,如整合电商企业内外部多源数据以全面了解产品情况;借助数据一致性与标准化,统一格式语义并保证质量,像统一企业各系统数据格式来确保分析准确;还能提供全面数据视图,有力支持跨部门决策并增强洞察深度,例如产品研发结合多部门数据及综合分析多类数据助力企业战略制定等,多方面协同提升数据价值,为企业运营、决策、战略规划等诸多环节奠定坚实基础并推动企业整体发展与竞争力提升。数据集成使得不同数据源的信息可以无缝地交流和共享,为企业提供更完整、全面的视角。通过数据集成,企业可以更好地洞察市场趋势、消费者行为以及业务机会,从而为未来的决策和战略提供有力支持。
实现数据价值的关键方法
要实现数据清洗、数据处理和数据集成的三部曲,以下方法至关重要:
1、综合技术应用:引入先进的技术,如人工智能和机器学习,用于自动化数据清洗和高效数据处理。在数据清洗环节,人工智能与机器学习大显身手。可自动察觉异常值,像销售数据里的偏差极大值能被精准识别,文本数据也能通过自然语言处理规范表达。数据处理时,机器学习预测缺失值,深度学习处理图像数据分类与标签化。而数据集成方面,人工智能助力数据匹配融合,聚类算法实现数据分组集成,让不同数据源的数据整合更智能高效。
2、数据一体化平台:使用综合的数据一体化平台,将数据清洗、数据处理和数据集成的流程整合在一起,实现更高效的数据管理。数据清洗上,其质量规则引擎允许自定义规则,如金融数据金额规范,还能查重确保唯一性。数据处理中,内置工具与算法库方便数据探索分析与多种计算,且支持实时处理数据流并触发业务流程。数据集成时,强大连接能力可对接各类数据源,转换映射工具保障数据格式与结构一致,便于整合分析。
3、业务驱动决策:将经过三部曲处理的数据应用于业务决策,从而将数据的潜力转化为真实的商业价值。数据清洗依据业务决策需求定重点与优先级,如高价值客户营销侧重相关数据准确性,库存决策确保库存数据质量。数据处理按业务目标分析,新产品评估聚焦相关数据挖掘与统计,订单处理依流程实时处理反馈。数据集成则为业务决策整合多源数据,战略决策整合内外部数据,且依决策流程验证优化,保障数据服务商业决策。
随着技术的不断发展,数据清洗、数据处理和数据集成的三部曲将不断演化。未来,更智能化的数据清洗和数据处理技术将会出现,为数据集成带来更高效的手段。数据的价值也将不断提升,为企业提供更多的创新机会和竞争优势。
FineDataLink是一款低代码/高时效的数据集成平台,它不仅提供了数据清理和数据分析的功能,还能够将清理后的数据快速应用到其他应用程序中。FineDataLink的功能非常强大,可以轻松地连接多种数据源,包括数据库、文件、云存储等,而且支持大数据量。此外,FineDataLink还支持高级数据处理功能,例如数据转换、数据过滤、数据重构、数据集合等。使用FineDataLink可以显著提高团队协作效率,减少数据连接和输出的繁琐步骤,使整个数据处理流程更加高效和便捷。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。