企业数字化转型高效设计的26个架构图全面覆盖了治理管控、性能监控、云原生平台、能力开放平台、微服务架构等多个关键领域。通过精心设计的架构图,展示了如何整合ESB与API引擎构建统一SOA平台,实现微服务全生命周期管理,以及构建云原生技术平台。同时,还深入探讨了能力开放平台的功能域划分、遗留系统微服务化迁移策略、大数据平台架构设计,以及企业数字化转型的整体能力框架。这些架构图体现了技术层面的深度整合,支撑企业业务价值链的全面提升。
第一页:DevOps支撑平台与SOA治理管控平台构图
主题:DevOps支撑平台与SOA治理管控平台整合架构
- 核心组件:
-
基于传统的ESB总线引擎和API引擎。
-
整合构建统一的SOA治理管控平台和OpenAPI能力开放平台。
- 技术栈与服务:
-
微服务框架、持续集成中间件、资源池技术组件。
-
PaaS层包含服务容器、监控分析平台(服务视图、预警告警、统计分析等)。
-
ESB管理平台支持服务接入、设计、部署、测试及安全管理。
-
OpenAPI能力开放平台包括API接入、管理、日志、限流熔断等能力。
- 平台能力:
-
底层两个引擎可适配,但服务治理和能力开放共享。
-
提供服务运行监控、流控策略、服务链监控等运维功能。
第二页:服务性能监控架构
主题:服务性能监控KPI与资源利用率关系分析
- 架构层次:
- 资源层(CPU、内存)与服务层(连接池、大数据访问等)的分层架构。
- 关键监控指标:
-
服务KPI指标:服务连接超时、原始服务心跳监控等。
-
资源利用率指标:CPU、内存利用率等。
- 场景分析:
-
针对大并发、大数据调用场景下的服务性能与资源利用率的勾稽关系。
-
体现分层架构下各层次间的集成与协同关系。
第三页:云原生解决方案初步构图
主题:云原生解决方案初步设计
- 核心平台:
- PaaS技术能力平台作为核心,提供微服务开发、运行与运维监控。
- 支撑平台:
-
底层为研发过程管理和DevOps支撑平台。
-
上层为API网关和能力开放平台。
- 技术组件:
-
微服务开发框架(Spring Cloud)、应用托管平台(Docker)。
-
监控平台包括APM监控、资源监控等。
-
缺少对开发生命周期的全覆盖。
第四页:云原生解决方案优化构图
主题:云原生解决方案优化与全生命周期管理
- 架构升级:
- 容器云平台单独列出,强调其在云原生架构中的基础地位。
- 全生命周期管理:
-
PaaS层覆盖开发、运行、运维监控的全生命周期。
-
引入微服务治理平台,贯穿全生命周期。
- 技术组件与平台:
-
包括低代码平台、快速开发技术平台、微服务治理平台等。
-
强调技术中台、业务中台的支持作用。
第五页:能力开放平台整体架构设计
主题:能力开放平台分功能域架构设计
- 核心架构:
- 基于横向分层架构,划分不同功能域。
- 功能域划分:
-
接入中心:负责能力接入、注册、路由控制等。
-
运营中心:提供开发工具、服务检索、订购申请等运营功能。
-
运维中心:负责服务监控、告警预警、日志审计等运维任务。
- 关键组件:
-
能力聚合网关、API网关、能力调用日志审计等。
-
运营管理门户、开发者门户、合作伙伴门户等门户中心。
第六页:微服务架构转型与平台构建
主题:微服务架构转型与平台+应用新IT架构体系
- 转型目标:
- 构建平台+应用的新IT架构体系。
- 核心平台:
-
DevOps支撑平台、应用托管平台(Docker+Kubernetes)。
-
敏捷研发平台、持续集成和交付平台。
- 技术组件与服务:
-
强调API网关和能力开放平台的重要性。
-
包括MDM主数据平台、业务中台、数据中台等技术支持。
第七页:架构设计整理构图
主题:架构设计分领域层概念构图
- 领域层概念:
- 强调领域层在架构设计中的核心地位。
- 层次关系:
- 展示领域层与应用层、技术底层之间的依赖关系。
- 技术组件:
-
包括文档技术组件、应用框架、变更流程基础框架等。
-
体现领域模型、部件、产品结构等概念在架构设计中的应用。
第八页:微服务规划与数据架构设计
主题:微服务规划中的数据域划分与微服务模块划分
- 数据域划分:
- 通过识别数据模型中的关键点来进行数据域的划分。
- 微服务模块划分:
- 基于数据域划分来帮助划分微服务模块。
- 应用场景:
- 在微服务规划中结合传统的企业架构进行数据架构设计。
第九页:云原生知识体系构图
主题:云原生知识体系双维度分解
- 双维度分解:
- 从动态生命周期和横向资源服务两个维度分解云原生知识体系。
- 核心组件与服务:
-
包括IaaS平台、容器云架构、DevOps过程支撑等。
-
强调微服务划分、领域模型、微服务治理等技术概念。
- 技术中台与业务监控:
-
突出技术中台在云原生架构中的支持作用。
-
强调业务监控、端到端流程等运营管理能力。
第十页:大数据平台架构设计
主题:大数据平台架构设计与核心模块集成
- 架构层次:
- 横向分层架构,包括数据源、采集、适配器、数据存储等层次。
- 核心模块:
- 数据存储(RDBMS、NOSQL、HDFS等)、数据集成、数据处理分析(MapReduce、PIG、HIVE等)。
- 集成与协同:
-
强调各核心模块之间的集成和协同关系。
-
提供统一数据访问接口、数据挖掘、应用分析等能力。
第十一页:遗留IT系统迁移与集成
主题:遗留IT系统迁移与微服务化集成
- 迁移目标:
- 将遗留系统A和B进行微服务化迁移。
- 集成环境:
-
存在ESB服务总线和API网关两种情况。
-
遗留系统与微服务架构化系统并存。
- 关键组件:
-
技术中台PaaS层提供注册中心、配置中心、限流熔断等能力。
-
API网关作为微服务模块与外部交互的入口。
第十二页:咨询规划方法论构图
主题:常用的咨询规划方法论构图与金字塔结构
- 方法论阶段:
- 现状分析、发展愿景、蓝图设计、标准体系、SOA实施等五个阶段。
- 金字塔结构:
- 体现完整的金字塔结构,后续内容可按构图逐步描述和分解。
- 前期输入与输出:
-
输入包括企业SOA发展规划、IT规划等。
-
输出包括SOA集成框架、应用蓝图、总体规范等。
第十三页:咨询规划方法论构图(业务与主数据解决方案)
主题:业务与主数据解决方案的咨询规划方法论
- 现状分析:
- 包括业务流程现状、组织岗位现状、业务数据现状等。
- 解决方案:
- 提供业务解决方案、信息系统解决方案、主数据实施方案等。
- 实施计划:
-
制定总体实施方案,明确业务实施内容、系统实施内容等。
-
确定主数据管理业务的优先级和实施计划。
第十四页:PLM系统流程构图
主题:PLM系统流程设计与研发生产流程
- 研发生产流程:
- 设计、试制、转产、BOM发布等关键步骤。
- PLM系统支持:
-
提供BOM导入、产品配置、MRP生成等支持。
-
涵盖标准产品研发流程、合同设计研发流程等。
- 系统集成:
- 与ERP系统流程紧密集成,支持研发到生产的端到端流程。
第十五页:产品结构与研发过程管理
主题:产品结构管理与研发过程管理的架构
- 产品结构:
-
包括部件、文档、权限模型等关键要素。
-
支持产品组合、产品包、工程变更等管理功能。
- 研发过程管理:
-
提供项目管理、需求管理、评审管理、测试管理等能力。
-
强调过程资产管理、技术资产管理等支持研发过程的关键要素。
- 系统支持:
-
支持多项目管理、产品组合分析等功能。
-
强调研发过程中的协作与沟通。
第十六页:企业架构构图
主题:企业架构的全方位展示与业务IT融合
- 架构层次:
- 包括IT基础设施架构、IT系统集成架构、IT系统应用架构等层次。
以下为方案概览,仅展示部分内容******>>******
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。