在数字化浪潮席卷全球的今天,数据已成为推动经济社会发展的关键生产要素。为了更好地利用这一宝贵资源,数据资产化的概念应运而生。数据资产化是一个将数据转化为可计量、可管理、可交易资产的过程,它包含三个核心步骤:数据场景化、数据资源化和数据价值化。
一、数据场景化:赋予数据生命与意义
数据场景化是数据资产化的起点,它强调将数据置于具体的业务场景中进行考量和应用。脱离场景的数据只是一堆冰冷的数字,而融入场景的数据则能焕发出勃勃生机。
在实现数据场景化的过程中,首先需要识别关键业务场景。例如,在零售行业,销售预测、库存管理、顾客行为分析等都是关键场景。通过对这些场景的深入剖析,企业能够明确数据需求,进而有针对性地采集、整合相关数据。
以智能家居企业为例,通过分析用户在使用智能设备时产生的数据,如使用频率、时间分布等,企业可以洞察用户的生活习惯和偏好,从而为用户提供更加个性化的服务。这种基于场景的数据应用,不仅提升了用户体验,也为企业带来了更大的商业价值。
二、数据资源化:打造高质量数据资产
数据资源化是将原始数据经过清洗、整合、加工等处理后,转化为可供分析和利用的高质量数据资源的过程。这一过程对于提升数据价值、实现数据资产化至关重要。
在数据资源化的实践中,企业需要建立完善的数据治理体系,确保数据的准确性、一致性和安全性。同时,还需要运用先进的技术手段,如大数据处理平台、数据仓库等,对数据进行高效存储和管理。通过这些措施,企业能够构建起一个庞大且有序的数据资源池,为后续的数据分析和价值挖掘奠定坚实基础。
以金融行业为例,银行、保险公司等机构通过整合客户的基本信息、交易记录等数据资源,能够更准确地评估客户的信用风险和购买偏好,从而制定更精准的营销策略和风险管理措施。这不仅提高了金融机构的运营效率,也降低了潜在的业务风险。
三、数据价值化:释放数据的潜在能量
数据价值化是数据资产化的最终目标,它旨在通过深度挖掘和分析数据资源,发现其中的商业价值,并将其转化为企业的实际收益和竞争力。
实现数据价值化的关键在于充分利用先进的数据分析技术和工具,如机器学习、人工智能等,对数据资源进行深度挖掘和模式识别。通过这些技术手段,企业能够洞察市场趋势、优化业务流程、创新产品和服务,从而实现数据价值的最大化。
以电商行业为例,通过对用户购物数据的深入分析,电商平台能够精准预测用户的购买需求和偏好,从而为用户推荐更加合适的商品和服务。这种基于数据的个性化推荐服务,不仅提升了用户的购物体验,也大大提高了电商平台的销售额和利润。
结语
数据资产化的“三步曲”——数据场景化、数据资源化和数据价值化,为企业提供了将数据转化为宝贵资产的有效路径。通过这三个步骤的系统推进,企业能够充分挖掘和利用数据的潜在价值,推动业务创新和转型升级。在数字化转型的道路上,掌握数据资产化的关键技术和方法,将成为企业赢得未来竞争的重要筹码。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。