基于deepseek大模型农业专家系统farm-rag
源代码
http://www.gitpp.com/naturepaper/farm-rag
这个开源系统已经完整,能运行,基于这个开源,可以开发更多更高级的 智慧农业专家系统
DeepSeek真是国运奇迹,开源免费,全球大量用户,极大提高生产效率。
DeepSeek,能够赋能农业,这个开源:基于deepseek大模型农业专家系统farm-rag
这个开源系统已经完整,能运行,基于这个开源,可以开发更多更高级的 智慧农业专家系统。希望大家能参与进来
畅想一下,基于DeepSeek的农业专家系统的未来
DeepSeek确实是一款具有开创性的开源语言模型,其开源免费的特性为全球用户提供了强大的技术支持,极大地促进了生产效率的提升。基于DeepSeek大模型构建的农业专家系统Farm-RAG,对农业领域具有深远的意义和影响。以下是对农业专家系统Farm-RAG具体用处的归纳:
- 精准农业管理:
-
作物健康监测:利用DeepSeek的图像识别技术,如DeepSeek-R1-Lite_Preview模型,分析无人机拍摄的农田图像,实时识别病虫害,如通过叶片病斑特征判断炭疽病感染等,帮助农民及时采取措施,减少病虫害对作物的影响。
-
智能灌溉系统:结合土壤传感器数据与DeepSeek的气象预测模型,动态调整灌溉方案,实现节水灌溉的同时提高作物产量。例如,在山东寿光某家庭农场,通过DeepSeek的智能灌溉系统,实现了节水40%,同时提高了番茄产量18%。
- 生产流程优化:
-
牲畜行为识别:使用DeepSeek的图像识别技术,如DeepSeek-Vision,识别牲畜行为,如母猪分娩体征、奶牛发情特征等,帮助农民更好地管理牲畜,提高养殖效率。例如,四川某家庭牧场通过该系统,将母牛受孕率从68%提升至83%。
-
农产品分级:部署DeepSeek的图像识别技术进行农产品分级,如苹果糖度光谱分析+外观检测等,提高农产品的品质和附加值,满足市场对高品质农产品的需求。
- 供应链管理:
-
生产计划规划:输入历史销售数据与DeepSeek的数学模型(如DeepSeek-Math),生成动态生产计划,帮助农民更好地规划生产和销售,减少产能过剩和滞销损失。例如,浙江某草莓农场通过该系统,将滞销损失从20%降至7%。
-
产品溯源报告:整合DeepSeek的自然语言处理(NLP)技术,生成产品溯源报告,自动生成种植日志摘要等,增强消费者信任,提高农产品的市场竞争力。
- 市场运营创新:
-
智能客服系统:部署DeepSeek的智能客服系统,如DeepSeek-R1-Instant,构建24小时农产品咨询机器人,提高客户服务质量,及时解答消费者疑问,提升品牌满意度。
-
个性化营销:使用DeepSeek的聊天机器人(如DeepSeek-Chat)生成短视频脚本、广告文案等内容,进行个性化营销,提升品牌曝光度和转化率,推动农产品销售。
- 种子研发与育种:
- 基因数据建模:DeepSeek可通过基因数据建模与强化学习算法,预测不同基因组合的抗病性、产量及适应性,从而缩短育种周期,降低成本。例如,中国农科院与阿里合作开发的平台,利用AI模拟气候、土壤条件,预测作物性状并筛选最优基因组合,将育种周期从10年以上缩短至3-5年。
- 田间管理自动化:
- 实时监测与调节:通过传感器实时监测土壤湿度、光照强度等参数,DeepSeek可自动调节灌溉与施肥方案,提高资源利用效率。
- 农业机械智能化:
- AI驱动的农业机械:AI驱动的农业机械正替代传统人力,解决劳动力短缺问题。播种机器人、收割机等可根据地形和作物条件优化操作模式,提高生产效率。
综上所述,基于DeepSeek大模型构建的农业专家系统Farm-RAG,通过精准农业管理、生产流程优化、供应链管理、市场运营创新等多个方面,为农业生产带来了智能化、精准化的解决方案,有助于提升农业生产效率和产品质量,推动农业可持续发展。
基于deepseek大模型农业专家系统farm-rag
源代码
http://www.gitpp.com/naturepaper/farm-rag
DeepSeek真是国运奇迹,开源免费,全球大量用户,极大提高生产效率。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。